期刊文献+

TC4钛合金高效磨削加工用环形热管砂轮的研制 被引量:10

Development of Annular Heat Pipe Grinding Wheel for High Efficiency Machining of TC4 Titanium Alloy
原文传递
导出
摘要 针对航空航天高强韧性难加工材料TC4钛合金在磨削加工中存在磨削温度高而导致工件表面烧伤的问题,提出利用热管换热技术冷却磨削弧区的新方法。分析了环形热管砂轮在加工中对磨削弧区的强化换热原理,并设计制作出能够用于磨削加工的环形热管砂轮,同时实现了对砂轮基体内环形管腔的密封、抽真空、精确注液与机械式真空封口。最后,在相同磨削工艺条件下,使用环形热管砂轮和无热管砂轮进行TC4钛合金缓进给深切磨削对比试验,验证了环形热管砂轮对磨削弧区温度的控制效果。试验结果表明:设计制作的环形热管砂轮在TC4钛合金高效磨削过程中可以有效降低磨削温度,避免工件表面出现烧伤。 Workpiece burnout is one of the distressing problems to be solved for the difficult-to-machine material TC4 titanium alloy due to the high grinding temperature caused by excessive grinding heat accumulation in the grinding zone.A new method of cooling the grinding zone by means of heat pipe technology is proposed in this paper.The heat transfer principle of an annular heat pipe grinding wheel(HPGW)was illustrated in the grinding process and an annular HPGW was designed and developed for high efficiency grinding of titanium alloy TC4.The manufacture was performed of annular heat pipe in the wheel consisting of three processes of vacuum pumping,working fluid filling and mechanical sealing.Finally,grinding experiments with different wheels(HPGW and non-HPGW) were carried out to verify the effect of enhancing heat transfer in the grinding zone under the same grinding condition for titanium alloy TC4.The results show that using the HPGW can effectively reduce the grinding temperature and prevent burnout in the grinding process.
出处 《航空学报》 EI CAS CSCD 北大核心 2013年第7期1740-1747,共8页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(51175254) 国家"973"计划(2009CB724403) 江苏省普通高校研究生科研创新计划(CXLX11_0174)~~
关键词 钛合金 高效磨削 磨削烧伤 环形热管砂轮 磨削温度 titanium alloys high efficiency grinding grinding burnout annular heat pipe grinding wheel grinding temperature
  • 相关文献

参考文献15

  • 1颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望[J].航空制造技术,2003,46(12):19-25. 被引量:115
  • 2Rowe W B, Thermal analysis of high efficiency deep grinding. International Journal of Machine Tools and Manufacture, 2001, 41(1): 1-19.
  • 3Kim N K, Guo C, Malkin S. Heat flux distribution and energy partition in creep-feed grinding. Annals of the CIRP, 1997, 46(1): 227-232.
  • 4Malkin S, Guo C. Thermal analysis of grinding. CIRP Annals—Manufacturing Technology, 2007, 56(2):760-782.
  • 5徐鸿钧,傅玉灿,孙方宏,徐西鹏.高效磨削时弧区热作用机理与强化弧区换热的基础研究[J].中国科学(E辑),2002,32(3):296-307. 被引量:28
  • 6Brinksmeier E, Heinzel C, Wittmann M. Friction, cooling and lubrication in grinding. Annals of the CIRP, 1999, 48 (2): 581-598.
  • 7Irani R A, Bauer R J, Warkentin A. A review of cutting fluid application in the grinding process. International Journal of Machine Tools and Manufacture, 2005, 45(15):1696-1705.
  • 8Ebbrell S, Woolley N H, Tridimas Y D, et al. The effects of cutting fluid application methods on the grinding process. International Journal of Machine Tools and Manufacture, 2000, 40(2): 209-223.
  • 9Morgan M N, Jackson A R, Wu H, et al. Optimisation of fluid application in grinding. CIRP Annals- Manufacturing Technology, 2008, 57(1): 363-366.
  • 10Judd R L, MacKenzie H S, Elbestawi M A. Investigation of a heat pipe cooling system for use in turning on a lathe. The International Journal of Advanced Manufacturing Technology, 1995, 10(6): 357-366.

二级参考文献5

共引文献141

同被引文献140

引证文献10

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部