期刊文献+

AdaBoost-EHMM算法及其在行为识别中的应用

AdaBoost-EHMM algorithm and application in action recognition
下载PDF
导出
摘要 隐马尔可夫模型(Hidden Markov Model,HMM)是一种有效的时序信号建模方法,已广泛用于语音识别、文字识别等领域,近年来也被用于人的行为识别。人的行为序列是一种特殊的时序信号,每类行为往往包含若干帧关键姿势。利用行为序列的这个特点,提出了AdaBoost-EHMM(AdaBoost-Exemplar-based HMM)算法,并将该算法应用于行为识别中。利用AdaBoost的特征选择方法将行为序列中的典型样本逐个选择出来作为HMM观测概率模型的均值,之后融合多级分类器进行行为识别。实验结果证明AdaBoost-EHMM算法在保证算法收敛的同时提高了识别率。 Hidden Markov Model (HMM) is an effective method of modeling time sequence, and has been widely used in speech recognition, character recognition, and in action recognition recently. Human action sequence is one kind of special time sequences. Each action sequence always includes some key poses. So, AdaBoost-EHMM(AdaBoost-Exemplar-based HMM) algorithm is presented and used in action recognition. AdaBoost method is used to select exemplars from action sequences as the mean values of observation probability model. Fusion of multiple classifiers is adopted to classify action sequence. Effectiveness of the proposed approach is demonstrated with experiments.
出处 《计算机工程与应用》 CSCD 2013年第14期186-192,共7页 Computer Engineering and Applications
关键词 AdaBoost-EHMM 行为识别 特征提取 AdaBoost-Exemplar-based HMM(AdaBoost-EHMM) action recognition feature extraction
  • 相关文献

参考文献12

  • 1Rabiner L R.A tutorial on hidden Markov model and selected applications in speech recognition[J].Proceedings of the IEEE, 1989,77(2) :257-286.
  • 2Rabiner L R,Juang B H.An Introduction to hidden Markov models[J].IEEE ASSP Magazine, 1986,3( 1 ) :4-16.
  • 3Yamato J, Ohya J, Ishii K.Recognizing human action in time-sequential images using hidden Markov model[C]//Proceedings of IEEE Conference on Computer Vision and Pat- tern Recognition, 1992 : 379-385.
  • 4Brand M, Oliver N, Pentland A.Coupled hidden Markov models for complex action recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recogni- tion, 1997: 994-999.
  • 5Elgammal A M, Shet V D, Yacoob Y, et al.Learning dynamics for exemplar-based gesture recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recogni- tion, 2003 : 571-578.
  • 6Weinland D,Boyer E, Ronfard R.Action recognition from arbitrary views using 3D exemplars[C]//Proceedings of IEEE International Conference on Computer Vision,2007: 1-7.
  • 7边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2004.
  • 8Viola P, Jones M.Rapid objects detection using a boosted cascade of simple features[C]//Proceedings of IEEE Confer- ence on Computer Vision and Pattern Recognition, 2001: 511-518.
  • 9Gu Junxia, Ding Xiaoqing, Wang shengjin, et al.Action and gait recognition from recovered 3-D human joints[J].IEEE Trans on Systems, Man, and Cybernetics, Part B, 2010, 40 (4) : 1021-1033.
  • 10Weinland D.The institut national de recherche en informa- tique et automatique xmas motion acquisition sequences data[EB/OL]. [2006-12-01 ].https ://charibdis.inrialpes. fr.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部