期刊文献+

基于结构化稀疏模型的压缩感知重构改进算法 被引量:1

New recovery algorithm for compressed sensing based on structured sparse model
下载PDF
导出
摘要 目前,标准的CS重构算法仅利用信号和图像在小波变换下的稀疏先验信息,而并没有利用变换系数具有的结构化特性。为了能够快速精确地重建原始信号,将结构化稀疏模型与SP算法、CoSaMP算法相结合,提出了压缩感知重构的改进算法。另外,将基于双树复小波变换的系数结构模型融入上述算法,进一步提高重构性能。实验结果表明,所提出的算法可获得更高的图像重建质量。 Recently, normal recovery algorithms for CS only use signal and image sparse priors under wavelet, make no use of the tree structure priors. In order to reconstruct the original signal quickly and accurately, this paper brings the tree structure sparse model into SP algorithm, CoSaMP-algorithm and gets the improved recovery algorithm for compressed sensing. Combin- ing with structured sparse model and dual-tree complex wavelet transform, a new recovery algorithm for CS is proposed. The simulated results show that the algorithm can achieve higher reconstructed image performance.
出处 《计算机工程与应用》 CSCD 2013年第14期203-206,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61002027)
关键词 压缩感知 结构化稀疏模型 双树复小波变换 Compressed Sensing(CS) structured sparse model dual-tree complex wavelet transform
  • 相关文献

参考文献13

  • 1Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4) : 1289-1306.
  • 2Chen S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit[J].SIAM J Sci Comp, 1999,20( 1 ) :33-61.
  • 3Mallat S G, Zhang Z F.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing, 1993, 41(12).
  • 4Davenport M A, Wakin M B.Analysis of orthogonal match- ing pursuit using the restricted isometry property[J].IEEE Transactions on Information Theory, 2010,56(9 ).
  • 5Dai W,Olgica M.Subspace pursuit for compressive sensing: closing the gap between performance and complexity[J]. IEEE Transactions on Information Theory, 2009, 55 (5): 2230-2249.
  • 6Needell D, Tropp J A.COSAMP: iterative signal recovery from incomplete and inaccurate samples[J].Appl Comput Harmon Anal,2008: 301-321.
  • 7Baraniuk R G, Cevher V, Duarte M F, et al.Model-based compressive sensing[J].IEEE Transactions on Information Theory,2010,56(4) : 1982-2001.
  • 8Duarte M F.Fast reconstruction from random incoherent pro- jections[R].Houston: Rice University, 2005.
  • 9Yonina C E, Helmut B.Block-sparsity: coherence and effi- cient recovery[C]//IEEE International Conference on Acous- tics, Speech and Signal Processing,2009:2885-2888.
  • 10Kingsbury N G.The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement[C]// Proc European Signal Processing Conf, Rhodes, 1998.

二级参考文献20

  • 1吴冬梅.基于平移不变小波阈值算法的噪声图象估计[J].光子学报,2005,34(2):306-309. 被引量:24
  • 2ALAYHOGLU B A,AGHDASI F.A wavelet neural network for the detection of microcalcifications in multiscale enhanced digitized mammograms[C].AFRICON,1999:389-394.
  • 3DHAWAN A P,CHITRE Y,KAISER B C.Analysis of mammographic microcalcifieations using gray-level image structure features[J].IEEE Transaction on Medical Imaging.1996,15(3):246-259.
  • 4ZADEH H S,RAD F R,NEJAD S P.Comparison of multiwavelet,wavelet,haralick.and shape feature for microcalcification classification in mammograms[J].Pattern Recognition,2004,37:1973-1986.
  • 5ZHANG Lei,GAO Xie-ping.Research on translation-invariant wavelet transform for classification in mammograms[C].The 3rd International Conference on Natural Computation (ICNC'07),2007,3:571-575.
  • 6MAGAREY J F A,KINGSBURY N G.Motion estimation using a complex-valued wavelet transform[J].IEEE Trans on Signal Processing,Special Issue on Wavelets and Filter Banks,1998,46(4):1069-1084.
  • 7KINGSBURY N G.The dual-tree complex wavelet transform:a new technique for shift invariance and directional filters[C].IEEE Digital Signal Processing Workshop,DSP 98,Bryce Canyon.August 1998,paper No86.
  • 8KINGSBURY N G.Image processing with complex wavelets[C].Phil.Trans.Royal Society London A.September 1999,on a Discussion Meeting on "Wavelets:the key to intermittent information?",London,February 24-25,1999.
  • 9KINGSBURY N G.Complex wavelets for shift invariant analysis and filtering of signals[J].Journal of Applied and Computational Harmonic Analysis,2001,10(3):234-253.
  • 10SELESNICK I W,BARANIUK R G.KINGSBURY N G.The dual-tree complex wavelet transform[J].IEEE Signal Processing Magazine.2005,22.123-151.

共引文献2

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部