期刊文献+

图像的多成分混合字典压缩感知表示及重构 被引量:1

Image representation and reconstruction for compressed sensing by multi-component combined dictionary
下载PDF
导出
摘要 信号分解的稀疏程度决定了压缩感知重构信号的精度,针对标准正交基稀疏程度的不足,提出了基于混合字典的压缩感知图像分解和重构方法。构建匹配图像边缘和纹理的二维Gabor字典,将图像在离散余弦字典与建立的二维Gabor字典上进行混合稀疏分解,得到图像的光滑成分、边缘成分和纹理成分。对得到的稀疏成分进行CS观测,通过求解一个优化问题重构图像。实验结果表明,构造的混合字典能够对图像进行更加稀疏的表示,在相同的采样率下,图像的重构质量优于标准正交基分解。 The precision of the signal reconstruction by compressed sensing is decided by the sparse degree of signal decomposi- tion. According to the insufficient sparse degree of standard orthogonal basis, this paper establishes two-dimensional Gabor dic- tionaries which can match the edge and texture of an image. Mixed sparse decomposing of the image on the discrete cosine dic- tionary and established two-dimensional Gabor dictionaries, it can get the smooth component, edge component and texture com- ponent of the image. It measures the obtained sparse components by compressed sensing, by solving an optimization problem, original image can be reconstructed. Experimental results demonstrate that the multi-component dictionaries can give more sparse representation for an image, and the quality of image reconstruction is better than standard orthogonal basis sparse decom- position in the same sampling rate.
出处 《计算机工程与应用》 CSCD 2013年第14期207-211,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61071171) 西北工业大学研究生创业种子基金资助(No.Z2011099)
关键词 压缩感知 多成分混合字典 稀疏图像表示 图像重构 compressed sensing multi-component dictionaries sparse image representation image reconstruction
  • 相关文献

参考文献14

  • 1Candes E.Compressive sampling[C]//Proceedings of the Inter- national Congress of Mathematicians, Madrid, Spain, 2006,3 : 1433-1452.
  • 2Donoho D L.Compressed sensing[J].lEEE Transactions on Information Theory, 2006,52 (4) : 1289-1306.
  • 3Candes E J, Tao T.Near optimal signal recovery from ran- dom projections: universal encoding strategies[J].IEEE Trans on Info Theory,2006,52(12):5406-5425.
  • 4Peyre G.Best basis compressed sensing[C]//Lecture Notes in Computer Science, 2007,4485 : 80-91.
  • 5Mallat S, Zhang Z.Matching pursuits with time-frequency dictionaries[J].lEEE Trans on Signal Process, 1993,41 (12) : 3397-3415.
  • 6孙玉宝,肖亮,韦志辉,邵文泽.基于Gabor感知多成份字典的图像稀疏表示算法研究[J].自动化学报,2008,34(11):1379-1387. 被引量:43
  • 7练秋生,陈书贞.基于混合基稀疏图像表示的压缩传感图像重构[J].自动化学报,2010,36(3):385-391. 被引量:28
  • 8练秋生,陈书贞.基于解析轮廓波变换的图像稀疏表示及其在压缩传感中的应用[J].电子学报,2010,38(6):1293-1298. 被引量:28
  • 9Meyer Y.Oscillating patterns in image processing and non- linear evolution equation[M].Boston: American Mathematical Society, 2001.
  • 10Chen S, Donoho D L, Saunders M A.Atomic decomposi- tion by basis pursuit[J].SIAM Review,2001,43(1 ) : 129-159.

二级参考文献130

  • 1练秋生,孔令富.具有多方向选择性的小波构造[J].电子学报,2005,33(10):1905-1909. 被引量:6
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3练秋生,孔令富.圆对称轮廓波变换的构造[J].计算机学报,2006,29(4):652-657. 被引量:12
  • 4Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 5Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 6Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 7Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 8Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 9Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 10Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616

共引文献783

同被引文献23

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部