期刊文献+

基于决策树和相关向量机的智能故障诊断方法 被引量:12

Intelligent fault diagnosis method based on decision tree and RVM
下载PDF
导出
摘要 针对故障诊断面临的故障样本少、非线性强、多故障处理等问题以及传统智能诊断方法存在的不足,提出了一种基于决策树(DT)和相关向量机(RVM)的智能故障诊断方法。通过构造决策二叉树,将多类分类问题分解成多个二类分类问题;在各个决策节点,利用RVM进行二类分类,从而实现RVM的多类分类。理论分析及仿真结果表明,相比支持向量机,新方法在保持高诊断正确率的同时具有更高的稀疏性和诊断效率,并且能够提供概率式输出,更具实用价值;相比OAR-RVM和OAO-RVM方法,新方法节省了训练时间,具有更高的训练效率。 In view of the problems in fault diagnosis, such as small samples, nonlinear, multiple faults processing, and the defects of traditional intelligent methods, an intelligent fault diagnosis method based on Decision Tree(DT) and Relevance Vector Machine(RVM) is proposed. The DT is constructed, and the multi-class classification problem is divided into many binary classi- fication problems. RVM is used to make binary classification at every node, and then the multi-class classification of RVM is achieved. The theoretical analysis and results of application show that the proposed method has better performance in sparsity and diagnosis efficiency while keeping high accuracy compared with the traditional SVM methods, which makes it more practi- cal; and that the proposed method has a better training efficiency compared with OAR-RVM and OAO-RVM.
出处 《计算机工程与应用》 CSCD 2013年第14期267-270,共4页 Computer Engineering and Applications
关键词 故障诊断 相关向量机 决策树 fault diagnosis Relevance Vector Machine (RVM) Decision Tree (DT)
  • 相关文献

参考文献9

  • 1杜京义,侯嫒彬.基于核方法的故障诊断理论及其方法的研究[J].北京:北京大学出版社,2010.
  • 2袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007,26(11):29-35. 被引量:88
  • 3Tipping M E.The relevance vector machine[M]//Advances in Neural Information Processing Systems 12.[S.1.]: the MIT Press, 2000: 652-658.
  • 4Tipping M E.Sparse Bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research, 2001,1 (3) :211-244.
  • 5Silva C,Ribeiro B.Scaling text classification with relevance vector machines[C]//IEEE International Conference on Sys- tems,Man and Cybernetic,2006:4186-4191.
  • 6Demir B, Erturk S.Hyperspectral image classification using relevance vector machine[J].IEEE Geoscience and Remote Sensing Letters,2007,4(4) :586-590.
  • 7Nikolaev N, Tino P.Sequential relevance vector machine learning from time series[C]//IEEE International Joint Con- ference on Neural Networks,2005 : 1308-1313.
  • 8杨国鹏,周欣,余旭初,陈伟.基于相关向量机的高光谱影像混合像元分解[J].电子学报,2010,38(12):2751-2756. 被引量:17
  • 9段青,赵建国,马艳.优化组合核函数相关向量机电力负荷预测模型[J].电机与控制学报,2010,14(6):33-38. 被引量:43

二级参考文献73

共引文献142

同被引文献99

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部