期刊文献+

基于约简核矩阵的稀疏最小二乘支持向量机 被引量:2

Sparse Least Squares Support Vector Machine Based on Simplified Kernel Matrix
下载PDF
导出
摘要 为了解决最小二乘支持向量机模型稀疏性不足的问题,提出了一种约简核矩阵的LS-SVM稀疏化方法。按照空间两点的欧式距离寻找核矩阵中相近的行(列),并通过特定的规则进行合并,以减小核矩阵的规模,进而求得稀疏LS-SVM模型。以高斯径向基核函数为例,详细阐述了改进方法的实现步骤,并通过仿真表明了采用该方法求得的稀疏LS-SVM模型泛化能力良好。 To solve the problem of sparseness lacking in the Least Squares Support Vector Machine(LS-SVM) model,a sparse LS-SVM method based on simplifying kernel matrix was proposed in this paper.On the basis of the Euclidean distance between two points in space,the similar rows(columns) of kernel matrix can be obtained and merged according to a given rule,so as to reduce the scale of kernel matrix and obtain sparse LS-SVM model.Taking Gaussian radial basis kernel function for example,the implementation steps of this method were elaborated in detail, and the simulation experiment results show that the sparse LS-SVM model obtained by this method has an excellent generalization capacity.
出处 《计算机仿真》 CSCD 北大核心 2013年第7期239-242,共4页 Computer Simulation
关键词 支持向量机 最小二乘支持向量机 核矩阵 稀疏性 Support vector machines(SVM) Least squares support vector machine(LSSVM) Kernel matrix Sparsity
  • 相关文献

参考文献10

二级参考文献31

共引文献68

同被引文献11

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部