期刊文献+

基于高斯变异的生物地理学优化模型 被引量:7

Biogeography-Based Optimization Model Based on Gaussian Mutation
下载PDF
导出
摘要 生物地理学优化是一种新型群体智能算法,具有较好的应用前景。针对算法中两大基本算子之一的变异算子进行研究,为了进一步提高优化模型的精度,给出关于高斯变异的生物地理学优化模型。同时介绍了算法的基本原理,重点分析了算法中的变异策略,采用多个测试函数进行仿真。仿真结果表明,在相同的迁移模型下,不同的变异策略对算法优化性能有较大影响,高斯变异策略的优化性能优于随机变异策略。实验还表明栖息地数量对于算法的优化能力也有较大的影响。 The Biogeography-Based Optimization(BBO) is a new swarm intelligence algorithm which has shown impressive performance and been applicated in many fields.To improve the accuracy of the BBO,the mutation strategy which is one of the two basic operators was researched,and the BBO based on Gaussian mutation strategy was given. The basic principles and processes of BBO were described,and the mutation strategy of BBO was analyzed.Several test functions were used for simulation experiments,the experimental results indicate that different mutation strategies with the same migration rate models in BBO have a greater impact on the algorithm to optimize performance.The algorithm with Gaussian mutation strategy optimizes the performance better than the algorithm with random mutation strategy.The experimental results also show that the number of habitats results in significant changes in performance.
作者 陈基漓
出处 《计算机仿真》 CSCD 北大核心 2013年第7期292-295,325,共5页 Computer Simulation
基金 广西空间信息与测绘重点实验室开放基金项目(桂科能1103108-16)
关键词 生物地理学优化算法 变异策略 高斯变异 随机变异 Biogeography-based Optimization Mutation strategy Gaussian mutation Random mutation
  • 相关文献

参考文献7

二级参考文献55

  • 1郑肇葆,黄桂兰.航空影像纹理分类的最小二乘法和问题的分析[J].测绘学报,1996,25(2):121-126. 被引量:13
  • 2郑肇葆.基于蚁群行为仿真的影像分割[J].武汉大学学报(信息科学版),2005,30(11):945-949. 被引量:10
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 4DORIGOM,STUTZLET.蚁群优化[M].张军,胡晓敏,罗旭耀,译.北京:清华大学出版社,2007:216-246.
  • 5Pan Z J,Kang L S,Chen Y P.Evolutionary Computation[M].Beijing:Tsinghua University Press,2000.
  • 6Yao X,Liu Y,Lin G.Evolutionary programming made faster[J].IEEE Transactions on Evolutionary Computation,1999,(2):82-102.
  • 7Liu J,Zhong W,Jiao L.An organizational evolutionary algorithm for numerical optimization[J].IEEE Trans System,Man,and Cybernetics:Part B,2007,(4):1052-1064.
  • 8Rahnamayan S,Tizhoosh H R,Salama M M A.Opposition-based differential evolution[J].IEEE Transactions on Evolutionary Computation,2008,(1):64-79.
  • 9Simon D.Biogeography-based optimization[J].IEEE Transactions on Evolutionary Computation,2008,(6):702-713.
  • 10Simon D.Matlab code of BBO[EB/OL].http://academic.csuohio.edu/simond/bbo/,2008.

共引文献76

同被引文献57

  • 1马海平,李雪,林升东.生物地理学优化算法的迁移率模型分析[J].东南大学学报(自然科学版),2009,39(S1):16-21. 被引量:46
  • 2王继东,王万良.基于遗传算法的汽油调和生产优化研究[J].化工自动化及仪表,2005,32(1):6-9. 被引量:18
  • 3SIMON D. Biogeography-based optimization [ J ]. IEEE Transaction on Ew~lutional7 Computalion,2008,12 ( 6 ) : 702- 713.
  • 4GONG W Y, CAI Z H, LING C X, et al. A real-coded bio- geography-based optimization with mutation [ J ]. Applied Mathematics and Computation,2010,216(9) :2749-2758.
  • 5XIONG G J, SHIN D Y, DUAN X Z. Enhancing the per- formance of biogeography-based optimization using poly- phyletic migration operator and orthogonal learning [ J ]. Computers & Operations Research,2014,41 (1) :125-139.
  • 6L1 X, WANG J, ZHOU J, et al. A perturb biogeography based optimization with mutation tor global numerical op- timization [ J ]. Applied Mathematics and Computation, 2011,218(2) :598-609.
  • 7MA H P,SIMON D. Blended biogeography-based optimi- zation for constrained optimization [J]. Engineering Appli- cations of Artificial Intelligence,2011,24(3) :517-525.
  • 8SATHYA P D, KAYALVIZHI R. Modified bacterial fora- ging algorithm based multilevel thresholding for image segmentation[ J ]. Engineering Applications of' Artificial Intelligence, 2011,24 ( 4 ) : 595-615.
  • 9LI T. Modified PSO and the application for gasoline blending recipe optimization[D]. Dalian: Dalian University of Technology, 2006.
  • 10SIMON D. Biogeography-based optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702-713.

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部