期刊文献+

基于在线辨识的锅炉中间点温度GPC-PID控制 被引量:10

GPC-PID Control for Boiler Intermediate Point Temperature Based on Online Identification
下载PDF
导出
摘要 针对超超临界直流锅炉中间点温度时变、影响因素多的特点,采用常规的串级PID控制难以达到预期的控制效果,提出了一种基于两阶段闭环在线辨识的GPC-PID控制方法。该方法首先引入基于递归最小二乘(RLS)的两阶段闭环在线辨识算法,辨识出一类变工况下锅炉中间点温度随给水量变化的参数模型,并分别选用了自回归(ARX)模型和有限脉冲响应(FIR)模型作为中间辨识模型,同时将在线辨识模型结合广义预测控制算法(GPC)对PID参数进行实时调节。仿真结果表明,该算法能快速跟踪中间点温度模型参数的变化,有强的抗干扰能力,具有一定的应用价值。 A new method is presented based on two-stage closed-loop online identification GPC-PID, Because the Ultra supercritieal once-though boiler intermediate point temperature has time - varying and factors affecting characteristics, It' s difficult to achieve the desired performance by using the general cascade PID control. By using a two-stage closed-loop online identification method based on recursive least squares, a class of variable conditions parameter model is identified. The model is that boiler intermediate point tempera- ture change with feed water flow. Also ARX model and FIR model are selected as transition model. And then generalized predictive con- trol(GPC) algorithm is utilzed to adjust the PID parameters with the online identificated model. The experiment result shows that such method can not only fast track variation of intermediate point temperature model parameters but also have stronge anti - interference ability, and show the effectiveness of the algorithm.
出处 《控制工程》 CSCD 北大核心 2013年第4期631-634,共4页 Control Engineering of China
基金 上海市科委重点项目(08160512100)
关键词 两阶段闭环辨识 锅炉中间点温度 超超临界机组 广义预测控制 递归最小二乘法 two-stage closed-loop identification boiler intermediate point temperature ultra supercritical unit generalized predictive control recursive least - squares
  • 相关文献

参考文献15

  • 1M. Zarrop. Design for Dynamic System Identification. Lecture Notesin Control and Inform. Sci. 21, Springer Verlag, Berlin, New-York,1979.
  • 2俞成立.超(超)临界机组中间点温度过热度控制策略[J].中国电力,2008,41(7):60-64. 被引量:13
  • 3Tan K K,Huang S N,Lee T H. Development of a GPC-based PIDcontroller for unstable systems with deadtime [ J ]. ISA Transac-tions, 2000,39( 1) ;57-70.
  • 4李林欢,刘斌,苏宏业,褚健.基于输出误差预测的模糊预测PID控制及应用[J].浙江大学学报(工学版),2004,38(7):826-830. 被引量:8
  • 5Forssell U,Ljung L. Closed-loop identification revisited[ J]. Auto-matica,1999,35(6) :1215-1224.
  • 6曹江涛,李平,郭丹.两阶段闭环辨识算法仿真[J].石油化工高等学校学报,2003,16(3):70-74. 被引量:4
  • 7Van den hof,Paul,Schrama. An indirect method for transfer func-tion estimation from closed-loop data [ J ]. Automatica, 1993 , 29(6):1523-1527.
  • 8S. Purwar,L. N. Kar, A. N. Jha. Adaptive output feedback trackingcontrol of robot manipulators using position measurements only [ J].Expert Systems with Applications,2008,34(4) :2789-2798.
  • 9Fuchun Sun,Zengqi Sun,Peng-Yung Woo. Neural network-based a-daptive controller design of robotic manipulators with an observer[J]. IEEE Transactions on Neural networks,2001,12(1) :54-67.
  • 10Wai H J,Chang C J. Tracking control based on neural network strat-egy for robot manipulator[ J]. Neurocomputing,2003,51 :425-445.

二级参考文献11

共引文献22

同被引文献88

引证文献10

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部