期刊文献+

基于改进混沌粒子群算法的管网优化 被引量:6

Pipe Network Optimization Based on Improved Chaotic Particle Swarm Optimization
下载PDF
导出
摘要 针对混沌粒子群运算初期的无目的性、固定的控制参量在运算后期不利于跳出局部最优等进行了分析和改进,利用混沌运动的随机性、遍历性和规律性特点对粒子群体中的最优粒子进行混沌寻优,根据给水管网管径选取的离散化特殊性,对混沌粒子群的混沌参量μ进行公式化规定,提出一种改进型混沌粒子群算法(HMCPSO),提高粒子群算法摆脱局部极优的能力。通过引入混沌算法启动机制,有效提高种群初期的收敛能力,通过引入粒子群位置的历史数据判断机制,减少多余的混沌运算,有效缩短算法运行时间。将本改进算法应用于给水管网的模型中,仿真效果表明文中提出的改进算法与PSO和CPSO算法相比,找到的结果更优且稳定性较好,运算时间得到有效减少。 This paper analyses and improves the no purpose in initial and ineffective for jumping out of the local optimum in the late on Chaotic Particle Swarm Optimization( CPSO), based on the randomness, stochastic property and regularity of chaos to find a new superi- or individual by chaotic searching on the global best individual. Defined chaos parameters/x according to the particularity of the water distribution network diameter, introduces an improved method of CPSO (HMCPSO), and improves the ability for seeking the global ex- cellent result. By introducing the mechanism of startup of CPSO, the convergence ability in early stage is improved effectively. By introducing the mechanism of.judge the historical data of particle position, reduces the excess operations of chaos, the calculation time is re- duced effectively. HMCPSO is then applied in the pipe network; comparing with PSO and CPSO, the result shows HMCPSO has higher speed and more stable outcomes.
出处 《控制工程》 CSCD 北大核心 2013年第4期694-698,共5页 Control Engineering of China
基金 国家自然科学基金重点项目(61034008) 国家自然科学基金项目(60873043) 教育部博士点基金项目(200800050004) 北京市"创新人才建设计划"项目(PHR201006103) 教育部新世纪优秀人才支持计划项目(NCET-08-0616) 北京市属市管高等学校人才强教计划资助项目PHR(IHLB)201006103
关键词 粒子群算法 混沌 优化 给水管网 Particle swarm optimization chaos optimization pipe network
  • 相关文献

参考文献11

  • 1Eberhart R,Kennedy J . A new optimizer using particle swarmtheory[ C] . Proc of the Sixth Int Symposium on micro machine andhuman science. Nagoya : IEEEpress, 1995 : 39-43.
  • 2Jinfeng Zhao. Chaotic Particle Swarm Optimization AlgorithmBased on TentMapping for Dynamic Origin-Destination Matrix Esti-mation [J ]. Electric Information and Control Engineering ( ICE-ICE),2011,4:15-17.
  • 3申元霞,王国胤,曾传华.相关性粒子群优化模型[J].软件学报,2011,22(4):695-708. 被引量:21
  • 4Shutao Li, Mingkui Tan. A Hybrid PSO-BFGS Strategy for GlobalOptimization of Multimodal Functions [ J ]. IEEE transactions onsystems, man, and cybernetics—PART B: Cybernetics, 2011,41(4):1003-1015.
  • 5Marco A. Montes de Oca, Thomas StUtzle, Mauro Birattari, Fran-kenstein ’ s PSO : A Composite Particle Swarm Optimization Algo-rithm [J ]. IEEE Transactions On Evolu-tionary Computation,2009,13(5) :1120-1133.
  • 6Jian-Qing Guo, Hong-Fei Zhou, Ling-Qun Meng. Chaos ParticleSwarm Optimization Algorithm for Estimating Solute Transport Pa-rameters of Streams from Tracer[ J]. Experiment Data InnovativeComputing, Information and Control ( ICICIC ) . 2009 , 7-9 : 872-875.
  • 7高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104
  • 8刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 9吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:450
  • 10王圃,衡洪飞,岳健.基于退火遗传算法的给水管网优化[J].中国给水排水,2007,23(1):60-63. 被引量:8

二级参考文献50

共引文献623

同被引文献61

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部