期刊文献+

基于FCM建模的DKICA间歇过程故障诊断 被引量:2

DKICA Fault Diagnosis of Batch Process Based on FCM Clustering Modeling
下载PDF
导出
摘要 由于对间歇过程应用KICA算法进行在线监控时需要预测从当前时刻到反应结束时刻的测量数据,同时间歇过程具有多个生产模态,应用KICA算法进行独立建模时,模型结构复杂,计算量大。针对间歇过程数据预估不准确和多模态计算量大的问题,提出了一种基于FCM聚类建模的双核独立元分析(DKICA)间歇过程故障诊断算法,该算法首先对间歇过程数据进行批次展开与变量展开,构建二维建模数据单元,然后将展开后的高维数据按FCM聚类进行分类,再对分类后的每个聚类模块应用DKICA算法提取独立元,建立每个聚类模块的诊断模型,并计算I^2和SPE统计量及相应的控制限,跟踪过程的运行状态,及时检测到故障的发生。将该方法应用于DuPont间歇聚合反应过程中,仿真结果验证了所提出方法的可行性和有效性,并显示出比KICA更好的诊断效果。 Measured data are forecasted from the current moment to the end moment of reaction when KICA algorithm is applied to monitor on-line in batch process. At the same time, batch process has multi production modality. So model structure is complex and calcu- lated amount is very large. Aiming at the problems about inaccuracy of data estimate and large calculated amount of multimode, a DKI- CA Fault diagnosis algorithm of batch process based on FCM cluster modeling is proposed in this paper. First this algorithm can process batch expansion and variable expansion for data of batch process and structure data units of two dimension model, then classify dimen- sional expansion data according to FCM cluster. Every clustering diagnostic model is set up by abstracting independent components by DKICA algorithm. This can be used to calculate statistics and control limits of 12 and SPE, follow running status and detect process faults timely. Simulation results of DuPont batch polymerization process have confirmed feasibility and effectiveness of the proposed algorithm which shows better diagnosis effect than KICA.
出处 《控制工程》 CSCD 北大核心 2013年第4期718-721,725,共5页 Control Engineering of China
基金 甘肃省教育厅硕士生导师项目(1003ZTC085) 甘肃省教育厅硕士生导师项目(1112RJZA028) 甘肃省制造业信息化工程技术研究中心开放基金资助(2012MIE01F02)
关键词 化工过程 故障诊断 DKICA FCM batch process fault diagnosis DKICA FCM
  • 相关文献

参考文献11

  • 1Yoo C K, Lee J M, Vanrolleghem P A, Lee I 6. On-line monito-ring of batch processes using multiway independent component a-nalysis [ J ]. Chemometrics and Intelligent Laboratory Systems,2004,71: 151-163.
  • 2Zhang Y W, Qin S J. Fault detection of nonlinear processes usingmultiway kernel independent component analysis [ J ]. Industrialand Engineering Chemistry Research, 2007, 46: 7780-7787.
  • 3Lane S,Martin E B,Kooijmans R,Morris A J. Performance moni-toring of a multi-product semi-batch process[ J] . Journal of ProcessControl, 2001, 11(1) : 1-11.
  • 4Zhao S J, Zhang J, Xu Y M. Monitoring of processes with multipleoperating modes through multiple principal component analysismodels [ J ]. Industrial and Engineering Chemistry Research,2004 , 43(22) : 7025-7035.
  • 5Chen J,Liu J. Mixture principal component analysis models forprocess monitoring[ J ]. Industrial and Engineering Chemistry Re-search, 1999, 38(4) ; 1478-1488.
  • 6Yang J, Gao X, Zhang D. Kernel ICA: An alterative formulationand its application to face recognition[ J]. Pattern Recognition,2005, 38(10):1784-178.
  • 7Westerhuis J A, Kourti T, MacGregor J F. Comparing alternativeapproaches for multivariate statistical analysis of batch process data[J]. Journal of Chemometrics, 1999,13(3-4) :397-413.
  • 8Gao Xin-bo(高新波).Fuzzy clustering analysis and its application[M]. Xian: Xian University of Electronic Science and TechnologyPress,2004.
  • 9李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 10Chen Q, Wynne R J, Goulding P,Sandoz D. The application ofprincipal component analysis and kernel density estimation to en-hance process monitoring「J ] . Control Engineering Practice, ‘2000, 8(5) : 531-543.

二级参考文献10

  • 1Zhexue Huang,Michael K Ng.A fuzzy k-modes algorithm for clustering categorical data[J].IEEE Trans on Fuzzy Systems,August,1999,7(4):446-452.
  • 2Zhexue Huang.A fast clustering algorithm to cluster very large categorical data sets in data mining[A].Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery[C].USA:ACM Press,1997.1-8.
  • 3Kononenko I.Estimating attributes:Analysis and extensions of Relief[A].Proceedings of the 7th European Conference on Machine Learning[C].Berlin:Springer,1994.171-182.
  • 4Kira K,Rendell L A.A practical approach to feature selection[A].Proceedings of the 9th International Workshop on Machine Leaning[C].San Francisco,CA:Morgan Kaufmann,1992.249-256.
  • 5Duda R O,Hart P E.Pattern classification and scene analysis[M].New York:John Wiley & Sons,1973.89-91.
  • 6Hathaway R J,Bezdek J C.Nerf C-means:Non-Euclidean relation fuzzy clustering[J].Pattern recognition,1994,27(3):429-437.
  • 7Michalski R S,Stepp R E.Automated construction of classifications:Conceptual clustering versus numerical taxonomy[J].IEEE PAMI,1983,5:396-410.
  • 8Jollois F X,Nadif M.Clustering large categorical data[A].Advances in Knowledge Discovery and Data Mining[C].Heidelberg:Springer-Verlag,2002.257-263.
  • 9何清.模糊聚类分析理论与应用研究进展[J].模糊系统与数学,1998,12(2):89-94. 被引量:113
  • 10李洁,高新波,焦李成.一种基于CSA的混和属性特征大数据集聚类算法[J].电子学报,2004,32(3):357-362. 被引量:9

共引文献113

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部