期刊文献+

用于玻璃-聚二甲基硅氧烷灌注式细胞培养芯片的温度控制系统设计 被引量:2

Development of a temperature control system for glass-PDMS perfusion cell culture chips
原文传递
导出
摘要 目的设计一种用于玻璃-聚二甲基硅氧烷(PDMS)灌注式细胞培养芯片的温度控制系统,代替传统的细胞培养箱,以提高与细胞灌注培养装置的可集成性,同时便于细胞培养过程中显微镜下动态观察。方法系统采用透光性良好的铟锡氧化物(ITO)镀膜导电玻璃作为加热元件,以Pt100传感器作为测温元件,与PID微控制器构成闭环温度控制系统;玻璃-PDMS细胞培养芯片采用微丝模塑软刻工艺加工而成;利用红外热成像仪对ITO加热元件表面上温度场均匀性进行验证;有限元数值分析对ITO加热元件上细胞培养芯片空间温度场分布进行模拟。结果与结论设计的温度控制系统结构简单,控制精度达±0.2℃;加热元件表面及玻璃-PDMS灌注式细胞培养芯片上培养腔内温度场空间分布均匀(1℃内),可满足实际细胞培养条件;在芯片上进行人肺癌细胞A549灌注培养实验显示,系统为细胞培养提供合适的温度环境且适合于细胞生物学行为的动态表征。 Objective To design a temperature control system for glass-polydimethylsiloxane(PDMS) perfusion cell culture chips to replace the traditional cell culture incubator.This system has a better integration with cell infusion culture devices and facilitates continuous observation under a microscope in the process of cell culture.Methods In this system,the transparent indium tin oxide(ITO) coated conductive glass was used as a heating element,a Pt100 sensor was used as temperature sensor,and a closed loop temperature control system was constructed with a PID controller.A glass-PDMS cell culture chip was fabricated using micro-wires molding technology.The temperature field distribution on the ITO heating element surface was verified by infrared thermal imaging experiments.Space temperature field distribution in the cell culture chip on this ITO heating element was checked through numerical simulation.Results and Conclusion The designed temperature control system had a simple structure and a good accuracy of 0.2℃.A uniform space temperature field distribution could be obtained on the heating element surface and in the cell culture chip culture cavity.Human lung cancer cells A549 perfusion culture experiments show that this designed system not only provides a fine temperature environment for cell culture,but is applicable to dynamic characterization of biological behavior of cells.
出处 《军事医学》 CAS CSCD 北大核心 2013年第6期460-464,共5页 Military Medical Sciences
基金 重庆市自然科学基金面上资助项目(cstc2012jjA10046) 重庆市卫生局医学科研计划资助项目(2012-2-165)
关键词 细胞培养技术 微流控芯片 铟锡氧化物 加热器 温度控制 cell culture techniques microfluidic chip indium tin oxide heater temperature control
  • 相关文献

参考文献14

  • 1Cui ZF, Xu X, Trainor N, et al. Application of multiple parallel perfused microbioreaetors and three-dimensional stem cell culture for toxicity testing [ J ]. Toxieol In Vitro, 2007,21 ( 7 ) : 1318 - 1324.
  • 2Wu MH, Kuo CY. Application of high throughput perfusion mi- cro 3-D cell culture platform for the precise study of cellular re- sponses to extracellular conditions-effect of serum concentrations on the physiology of articular chondrocytes[ J]. Biomed Microde- vices, 2011, 13(1): 131-141.
  • 3Wu MH, Urban JP, Cui Z, et al. Development of PDMS micro- bioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture[ J]. Biomed Microdevices, 2006, 8 (4) : 331 -340.
  • 4Wen Y, Zhang X, Yang ST. Mieroplate-reader compatible perfu- sion microbioreaetor array for modular tissue culture and eytotox- icity assays[ J ]. Biotechnol Prog, 2010,26 (4) : 1135 - 1144.
  • 5Wu MH, Huang SB, Cui ZF, et al. Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing[ J]. Sens Actuators B Chem,2008, 129 (1) : 231 -240.
  • 6Titmarsh D, Hidalgo A, Turner J, et al. Optimization of flow rate for expansion of human embryonic stem ceils in perfusion mi- crobioreactors[ J ]. Biotechnol Bioeng, 2011, 108 (12) :2894 - 2904.
  • 7McDonald JC, Duffy DC, Anderson JR, et al. Fabrication of mi- crofluidic systems in poly (dimethylsiloxane) [ J]. Electrophore- sis, 2000, 21 ( 1 ) :27 -40.
  • 8Yoon SK, Ahn YH, Jeong MH. Effect of culture temperature on follicle-stimulating hormone production by Chinese hamster ovary cells in a perfusion bioreactor [ J ]. Appl Microbiol Biotechnol, 2007, 76(1) : 83 -89.
  • 9Jha SK, Joo GS, Ra GS. Development of PCR microchip for ear- ly cancer risk prediction [ J ]. IEEE Sensors J, 2011, 11 ( 9 ) : 2065 - 2670.
  • 10Lin JL, Wang SS, Wu MH, et al. Development of an integrated microfluidic perfusion cell culture system for real-time microscop- ic observation of biological cells [ J ]. Sensors, 2011, 11 ( 9 ) : 8395 - 8411.

二级参考文献26

  • 1Whitesides G M. The origins and the future of microfluidics. Nature, 2006, 442:368--373.
  • 2Chen C, Hirdes D, Folch A. Gray-scale photolithography using microfluidic photomasks. Proc Natl Acad Sci USA, 2003, 100: 1499-- 1504.
  • 3Ikuta K, Hirowatiri H, Ogata Y. Three dimensional micro integrated fluid systems (MIFS) fabricated by stereo lithography. Proceedings IEEE Micro Electro Mechanical Systems (MEMS'94), Oiso, Japan, 1994. 1--6.
  • 4Bloomstein T M, Ehrlich D J. Laser-chemical three-dimensional wridng for microelectromechanics and application to standard-cell microfluidics. J Vac Sci Technol B, 1992, 10:2671--2674.
  • 5Gonzalez C, Smith R L, Howitt D G, et al. Microjoinery: Concept, definition, and application to microsystem development. Sens Actu A, 1998, 66:315--332.
  • 6Jo B H, van Lerberghe L M, Motsegood K M, et al. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Micro Electro Mech Sys, 2000, 9:76--81.
  • 7Xia Y, Whitesides G M. Soft lithography. Angew Chem Int Ed, 1998, 37:550--575.
  • 8Kumar A, Whitesides G M. Formation of microstamped patterns on surfaces and derivative articles. U.S. Patent, 5512131, 1997.
  • 9Chert C S, Mrksich M, Huang S, et al. Geometric control of cell life and death. Science, 1997, 276:1425--1428.
  • 10Bernard A, Delamarehe E, Schmid H, et al. Printing patterns of proteins. Langmuir, 1998, 14:2225--2229.

共引文献3

同被引文献37

  • 1Shevkoplyas S S, Yoshida T, Munn L L, et al. Biomimetic autoseparation of leukocytes from whole blood in a mic.roflu- idic device[J]. Anal Chem, 2005, 77(3) : 933-937.
  • 2Carugo D, Capretto L, Nehru E, et al. A microfluidic-based arteriolar network model for biophysical and bioanalytical in- vestigations[J]. Currt Anal Chem, 2013, 9( 1 ) : 47-59.
  • 3Rosano J M, Tousi N, Scott R C, et al. A physiologically realistic in vitro model of microvascular networks [ J ]. Bi- omed Microdevices, 2009, 11( 5 ) : 1051-1057.
  • 4Carugo D, Captto L, Willis S, et al. A microfluidic device far the charaeterisation of embolisation with polyvinyl alcohol beads through biomimetic bifurcations [ J ]. Biomed Microde- vices, 2012, 14( 1 ) :153-163.
  • 5Leclerc E, Sakai Y, Fujii T. Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane) [ J ]. Biomed Microdevices, 2003, 5(2) : 109-114.
  • 6Shao J Y, Hoehmuth R M. The resistance to flaw of individ- ual human neutrophils in glass capillary tubes with diameters between 4. 65 and 7. 75 /μm [ J ]. Microcirculation, 1997, 4 (1): 61-74.
  • 7Borenstein J T, Tupper M M, Mack P J, et al. Functional endothelialized microvascular networks with circular cross- sections in a tissue culture substrate[ J]. Biomed Microdevic- es, 2010, 12(1): 71-79.
  • 8Wang G J, Ho K H, Hsu S, et al. Microvessel scaffold with circular microchannels by photoresist melting [ J ]. Biomed Microdevices, 2007, 9 (5) : 657-663.
  • 9Fiddes L K, Raz N, Srigunapalan S, et al. A circular cross- section PDMS microfluidics system for replication of cardio- vascular flow conditions[ J]. Biomaterials, 2010, 31 ( 13 ) : 3459-3464.
  • 10Abdelgawad M, Wu C, Chien W Y, et al. A fast and simple method to fabricate circular mierochannels in polydimethylsi- loxane (PDMS)[J]. Lab Chip, 2011, 11(3): 545-551.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部