期刊文献+

基于文本挖掘的交互式专利分类 被引量:2

Interactive patent classification based on text mining
下载PDF
导出
摘要 将文本挖掘理论应用于专利信息分析,提出了一种基于多分类器融合与主动学习的交互式专利分类算法,旨在实现高效的专利分类。该算法基于训练集,利用支持向量机,针对不同的专利类别分别训练相应的子分类器,然后通过多分类器融合对各子分类器进行有机结合,以获得性能更优的分类器和形成分类决策。在此基础上,利用主动学习选取最有信息的样本进行标引,从而通过人机交互实现分类模型的更新。针对传统批量选择性采样的缺点,还提出了动态批量选择性采样模式,通过确定度传播策略有效降低标引样本冗余度,以进一步提高主动学习的效率。实验结果表明,这种基于多分类器融合与主动学习的交互式专利分类算法的分类性能显著高于其他算法。 This paper introduces the text mining technique into patent analysis and proposes an interactive patent classifi- cation algorithm based on multi-classifier fusion and active learning to achieve high classification performance. The algorithm first trains a sub-classifier for each class of the patents by means of support vector machine. Then, via multi-classifier fusion, the sub-classifiers are effectively combined to acquire enhanced classifiers, based on which the classification decision can be made. For refinement of the classification model, active learning is used to select the most informative patents for labeling Finally, the dynamic batch sampling is presented to address the problem of traditional batch sampling. With dynamic certainty propagation, the selected patents become less redundant and thus more informative for active learning. The experimental results demonstrate the effectiveness of the proposed in- teractive patent classification algorithm based on multi-classifier fusion and active learning.
作者 张晓宇
出处 《高技术通讯》 CAS CSCD 北大核心 2013年第6期592-597,共6页 Chinese High Technology Letters
基金 中央级公益性科研院所基本科研业务费专项资金(XK2012-2 ZD2012-7-2) 中国科学技术信息研究所科研项目预研基金(YY201208)资助项目
关键词 文本挖掘 专利分类 多分类器融合 主动学习 选择性采样 text mining, patent classification, multi-classifier fusion, active learning, selective sampling
  • 相关文献

参考文献3

二级参考文献41

  • 1Taylor S,Quinn M,Brown D,et al.Functional verification of a multiple-issue,out-of-order,superscalar Alpha processor-the DEC Alpha 21264 microprocessor.In:Proceedings of the 35th Design Automation Conference,California,USA,1998.638-643.
  • 2Fine S,Zlv A.Coverage directed test generation for functional verification using Bayesian networks.In:Proceedings of the 40th Design Automation Conference,Anahemi,California,USA,2003.286-291.
  • 3Hsiou-Wen H,Eder K.Test directive generation for functional coverage closure using inductive logic programming.In:Proceedings of the 11th High-Level Design Validation and Test Workshop,Monterey,California,USA,2006.11-18.
  • 4Samarah A,Habibi A,Tahar S,et al.Automated coverage directed test generation using a cell-based genetic algorithm.In:Proceedings of the 11th High-Level Design Validation and Test Workshop,Monterey,California,USA,2006.19-26.
  • 5Ur S,Yadin Y.Micro-architecture coverage directed generation of test programs.In:Proceedings of the 36th Design Automation Conference,New Orleans,Louisiana,USA,1999.175-180.
  • 6Romero E L,Strum M,Wang J C.Comparing two testbench methods for hierarchical functional verification of a bluetooth baseband adaptor.In:Proceedings of the 3rd Hardware/Softerware Codesign and System Synthesis,Jesey City,New Jersey,USA,2005.327-332.
  • 7Grinwald R,Harel E,Gore A,et al.User defined coverage-a tool supported methodology for design verification.In:Proceedings of the 35th Design Automation Conference,California,USA,1998.158-165.
  • 8Piziali A.Functional Verification Coverage Measurement and Analysis.Boston:Kluwer Acad,2004.56-94.
  • 9Vapnik V.The Nature of Statistical Learning Theory.New York:Springer,1995.91-115.
  • 10Ahmad A R,Khalid M,Yusof R.Kernel methods and support vector machines for handwriting recognition.In:Proceedings of the Student Conference on Research and Development,Shah Alam,Selangor,Malaysia,2002.309-312.

共引文献5

同被引文献67

引证文献2

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部