期刊文献+

五种典型浸矿微生物的耐氟性状对比研究 被引量:6

Comparative Study of Fluoride-tolerance of Five Typical Bioleaching Microorganisms
下载PDF
导出
摘要 在微生物冶金体系中,浸矿环境的压力很可能超出了浸矿菌种的耐受能力,提高浸矿菌种的耐受性是一个极具挑战性的难题.氟化物对微生物的生长具有很强的抑制或杀死作用.在本文所研究的五种浸矿细菌中,A.ferrooxidans的氟耐受性是最好的,其次是A.thiooxidans,再次是L.ferriphilum与A.caldus,最差的是S.thermosulfi-dooxidans.由此看出,中度嗜热浸矿菌比常温浸矿菌更容易被氟离子抑制. In microbial leaching systems, the microbial tolerance cannot generally bear the environmental stress. Fluoride to a large extent could inhibit the growth and activity of the microbes,or even kill the microbes. The growth state and iron/sulfur oxidation activities of five representive bioleaching microorganisms ( A. ferrooxidans ATCC 23270, L. ferriphilumYSK,S. thermosulfidooxidans ST,A. thiooxidans A01 ,A. caldus S1 ) upon different fluoride stress were compared. It showed that the fluoride tolerance of A.ferrooxidans was the best, A. thiooxidans was the second, L. ferriphilum and A. caldus was the third, S. thermosulfi- dooxidans was the worst. Additionally, moderate thermophiles were inhibited more than me- sophiles.
出处 《南华大学学报(自然科学版)》 2013年第2期16-22,共7页 Journal of University of South China:Science and Technology
基金 国家自然科学基金资助项目(31070104 51154003) 南华大学博士科研启动基金资助项目(2012XQD05)
关键词 浸矿微生物 氟耐受性 硫氧化活性 bioleaching microorganisms fluoride tolerance iron/sulfur oxidation activity
  • 相关文献

参考文献11

  • 1马宏.氟化物对口腔微生物的生物学作用[J].北京口腔医学,1998,6(3):132-134. 被引量:16
  • 2Marquis R E, Clock S A, Mota-Meira M. Fluoride and or- ganic weak acids as modulators of microbial Physiology [ J ]. FEMS Microbiology Reviews, 2003,26 : 493-510.
  • 3李江,饶军,刘亚洁,孙占学,李学礼,史维浚.高氟铀矿石微生物堆浸工业试验[J].有色金属(冶炼部分),2011(7):26-29. 被引量:19
  • 4Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching re- view part A: fundamentals and mechanisms of bacterial metal sulfide oxidation [ J ]. Applied Microbiology and Bi- otechnology ,2003 ,63 (3) :239-248.
  • 5Kim S, Bae J, Park H, et al. Bioleaching of cadmium and nickel from synthetic sediments by AcidithiobaciUus fer- roox/dans[J]. Environmental Geochemistry and Health,2005,27 (3) :229-235.
  • 6Gholami R M, Borghei S M, Mousavi S M. Bacterial leac- hing of a spent Mo-Co-Ni refinery catalyst using Acidi- thiobacillus ferrooxidans and Acidithiobacillus thiooxidans [J]. Hydwmetallurgy,2011,106( 1 ) :26-31.
  • 7Chen D D, Lin J Q, Che Y Y, et al. Construction of re- combinant mercury resistant AcidithiobaciUus caldus [ J ]. Microbiological Research ,20 11,166 (7) : 515-520.
  • 8Watkin E L J, Keeling S E, Perrot F A, et al. Metals tol- erance in moderately thermophilie isolates from a spent copper sulfide heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and SulfobaciUus thermosulfidooxidans [ J ]. Journal of Industrial Microbiol- ogy and Biotechnology,2009,36 (3) :461-465.
  • 9Nurmi P, Ozkaya B, Kaksonen A H, et al. Inhibition kinet- ics of iron oxidation by Leptospirillum ferriphilum in the presence of ferric, nickel and zinc ions [ J ]. Hydrometal- lurzv.2009.97 (3/4) :137-145.
  • 10Bruins M R, Kapil S, Oehme F W. Microbial resistance to metals in the environment[ J]. Ecotoxicology and En- vironmental Safety,2000,45 (3) : 198-207.

二级参考文献10

共引文献32

同被引文献69

  • 1孙占学,刘金辉,刘亚洁,李江,陈功新,王学刚,李学礼,史维浚.硬岩铀矿生物堆浸研究进展[J].中国矿业,2012,21(S1):422-423. 被引量:14
  • 2刘亚洁,李江,牛建国,李学礼,史淮浚,刘艳,贺笑余.铀矿石生物浸出中氟对铁-硫氧化细菌的影响[J].有色矿冶,2006,22(2):18-21. 被引量:19
  • 3贺笑余,刘亚洁,吴为荣,徐玲玲.钠离子、氟离子和剪切力等因素对中度嗜热嗜酸菌生长的影响[J].有色金属(冶炼部分),2006(5):6-9. 被引量:4
  • 4窦建军.生物强化技术处理合成制药废水及其生物相恢复的工程实例[D].重庆:重庆大学,2012.
  • 5MARQUIS R E ,CLOCK S A,MOTA-MEIRA M .Fluoride and organic weak acids as modulators of microbial physiology [J].Fems Microbiology Review, 2003,26(5): 493 - 510.
  • 6RIBO J M. Interlaboratory comparison studies of the luminescent bacteria toxicity bioassay [J].Environmental Toxicology and Water Quality, 1997,12(4): 283 - 294.
  • 7STOREY M V ,GAAG B V D,BURNS B P . Advances in on-line drinking water quality monitoring and early warning systems[J].Water Research, 2011,45(2) : 741 - 747.
  • 8Abhilash, Mehta K D, Kumar V, Pandey B D, Tam- rakar P K. Column bioleaching of a low grade silicate ore of uranium [ J ]. Mineral Processing and Extractive Metallurgy Review, 2010, 31(4) : 224.
  • 9Abhilash, Mehta K D, Kumar V, Pandey B D. Bi- oleaching-an alternate uranium ore processing technology for india [J]. Energy Procedia, 2011, 7: 158.
  • 10Abhilash, Singh S, Mehta K D, Kumar V,Pandey B D, Pandey V M. Dissolution of uranium from silicate-apa- tite ore by Acidithiobacillus ferrooxidans [ J ]. Hydro- metallurgy, 2009, 95 ( 1 ) : 70.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部