摘要
考虑非局部时滞微分方程cφ′(ξ)=∫RJ(ξ-y)φ(y)dy-φ(ξ)+f(φ(ξ),φ(ξ-cτ)),利用泰勒公式以及一些数学分析方法,给出了其上下解存在的充分条件以及具体的上下解,并用实例验证了本文结果的可行性.本文结果推广了文献[1]中的相应结果.
Using Taylor's formula and some analysis methods,we consider the following nonlocal delayed differential equation cφ′(ξ)=∫RJ(ξ-y)φ(y)dy-φ(ξ)+f(φ(ξ),φ(ξ-c τ)),and obtain the sufficient conditions to ensure the existence of upper-lower solutions.The specific upper-lower solutions are given.The feasibility of our results is illustrated by one example.The results in this paper generalize the corresponding results in reference [1].
出处
《延边大学学报(自然科学版)》
CAS
2013年第2期79-81,共3页
Journal of Yanbian University(Natural Science Edition)
基金
国家自然科学基金资助项目(11001157)
山西省高等学校优秀青年学术带头人支持计划项目(20120304)
山西省青年科技研究基金资助项目(2009021001-1)
关键词
非局部时滞微分方程
上下解
泰勒公式
nonlocal delayed differential equation
upper-lower solution
Taylor's formula