摘要
称有限群G的Cayley图Γ是正规Cayley图,如果G的右正则表示R(G)Aut(Γ).该文主要证明了2p2q 2阶二面体群连通3度Cayley图的正规性,其中p>q均为奇素数.作为应用,还证明了Aut(Γ)是可解群.
A Cayley graph r of a finite group G is said to be normal if the action of G on V(f') by right multiplication is normal in the full automorphism group of. In this paper, the authors mainly research the normality of connected cubic Cayley graph on Dihedral group with order 2p2q2 , where both p〉q are odd primes. As an application, they determine that the full automorphism group of is solvable. The classification of the finite simple groups is used here.
出处
《广西师范学院学报(自然科学版)》
2013年第2期8-11,共4页
Journal of Guangxi Teachers Education University(Natural Science Edition)
基金
国家自然科学基金项目(10961004)
广西科学基金项目(0832054
2013GXNSFA)
广西大学科研基金资助项目(XBZ110328)