期刊文献+

水下运载器纵向轨迹自适应跟踪控制 被引量:4

Adaptive tracking control of longitudinal trajectory for underwater vehicle
下载PDF
导出
摘要 针对强非线性、大俯仰角运动的水下运载器纵向运动轨迹跟踪问题提出了一类非线性自适应控制方案。首先,直接采用非线性运动模型,在控制器设计过程中引入饱和函数,通过麦克劳林展开公式避免了俯仰角为小角度的假设限制;其次,考虑到运载器非线性运动模型很难给出精确的数学描述并且实际运载器系统存在模型误差,采用在线自适应方法近似逼近其非线性模型;最后,利用Backstepping方法设计了非线性自适应控制器,并利用Lyapunov理论证明了控制系统的稳定性。半实物仿真结果表明:在考虑测量噪声和参数不确定性的情况下,该算法对给出的3种轨迹的跟踪误差均小于0.5m,俯仰舵偏均小于15°,俯仰力矩均在105N.m量级。结果验证了本文提出的控制系统鲁棒性强,满足跟踪性能要求。 For the underwater vehicle trajectory tracking with strong nonlinearity and large pitch angle movement,a class of nonlinear adaptive control schemes were proposed in this paper.Firstly,the nonlinear movement model was adopted directly,a saturation function was induced in the process of controller design,and the assumption limit that the pitch angle was a small-angle was broken through the Maclaurin expansion formula.Then,taking into account that the precise nonlinear motion model of the vehicle was difficult to establish and there were many modeling errors in the actual vehicle model,the online adaptive method was used to approximate the nonlinear model.Finally,a nonlinear adaptive controller was designed by using Backstepping method,and its stability was proved by Lyapunov’s theory.The hardware-in-the-loop simulation results show that the tracking errors of all three types of tracks given in the paper are less than 0.5 m,the pitch rudder partials are less than 15°,and the pitch moments are within 105 N·m order of magnitude in consideration of measurement noises and parameter uncertainties,These results prove that the control algorithm in this article has a strong robustness and can meet the requirement of tracking performance.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第7期1719-1726,共8页 Optics and Precision Engineering
基金 中国博士后科学基金资助项目(No.20110491028) 中央高校基本科研业务费(重点支持研究项目)(No.HEUCFZ1126)
关键词 水下运载器 非线性自适应控制 BACKSTEPPING方法 LYAPUNOV理论 underwater vehicle nonlinear adaptive control Backstepping method Lyapunov theory
  • 相关文献

参考文献11

  • 1CARLOS S, RITA C, NUNO P. A bottom-follow- ing preview controller for autonomous underwater [J]. IEEE Transaction on Control Systems Tech- nology, 2009,17(2) :257-266.
  • 2SHI X CH. Fuzzy sliding-mode controller for the motion of autonomous underwater vehicle [C]. IC- MA, 2008,466-470.
  • 3GIANLUCA A. On the use of adaptive/integral ac- tions for six-degrees-of-freedom control of autono- mous underwater vehicles [J]. Ocean Engineering, 2007, 32(2) :300-312.
  • 4POORYA H, MAHYAR N, SEYYED A S V. A- daptive position and attitude tracking of an AUV in the presence of ocean current disturbances [C]. CCA, 2007:741-746.
  • 5NARASIMHAN M, SINGH S N. Adaptive input- output feedback linearizing yaw plane control of BAUV using dorsal fins [J]. Oceanic Engineering, 2006,33 : 1413-1430.
  • 6ANTONELLI G, ROBOTS U. Motion and Force Control of Vehicle-manipulator Systems[M]. Ber- lin: Springer-Verlag, 2003.
  • 7SANTHAKUMAR M, ASOKAN T. Attitude con- trol of flatfish shaped autonomous underwater vehi- cle [C]. ICIIS, 2008.. 1-6.
  • 8夏国清,汤莉.基于动态神经网络的AUV航向自适应控制[J].船舶工程,2009,31(2):46-49. 被引量:5
  • 9FOSSEN T I. Guidance and control of ocean vehicles[M]. New York: John Wiley & Sons Ltd. , 1994.
  • 10GOHEEN K R, JEFFERYS E R. Multivariable self-tuning autopilots for autonomous and remote- ly operated underwater vehicles [J]. Ocean Engi- neering, 1990,15(3):144-151.

二级参考文献9

  • 1熊华胜,边信黔,施小成.积分变结构控制原理在AUV航向控制中的应用仿真[J].船舶工程,2005,27(5):30-33. 被引量:6
  • 2J. Yuh. A neutral net controller for underwater robotic vehicles [J]. IEEE Journal of Oceanic Engineering, 1990, 15 (3):161-166.
  • 3J. Yuh and K.V. Gonugunta. Learning control of underwater robotic vehicles [C]//Proceedings IEEE Infl Conf on Robotics and Automation, 1993:106-111.
  • 4J. Yuh R. Lakshmi. An intelligent control system for remotely operated vehicles [J]. IEEE Journal of Oceanic Engineering, 1993, 18 (1): 55-62.
  • 5J. Yuh. Learning control for underwater robotic vehicles [J]. IEEE Control System Magazine, 1994, 14(2): 39-46.
  • 6N. Seube. Neural network learning rules for control: application to AUV tracking control [C]//Proceedmgs of the 1991 IEEE Conference on Neural Networksfor Ocean Engmeenng, 1991:185-196.
  • 7K Venugopal, R.Sudhakar, A. Pandya. On-line learning conlrol of autonomous underwater vehicles using feed forward neural networks [J]. IEEE Journal of Oceanic Engineering, 1992, 17: 308-319.
  • 8I. Yamamoto. Application of neural network to marine vehicle[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks, 1995: 220-224.
  • 9J. H. Li and P. M. Lee. A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle [J]. Robotics and Autonomous Systems, 2005, 52: 132-147.

共引文献4

同被引文献52

  • 1张重先,曹廷旭,刘吉成.小型水下运载器快速上浮导弹发射过程扰动分析[J].数字海洋与水下攻防,2019(5):54-57. 被引量:1
  • 2张广明,高普云,唐乾刚.弹道导弹在被动段突防的脉冲式异面变轨方法[J].宇航学报,2008,29(1):89-94. 被引量:10
  • 3MILLER P A, FARRELL J A, ZHAO Y, et al.. Autonomous underwater vehicle navigation [J].IEEE Journal of Oceanic Engineering, 2010, 35 (3) :663-678.
  • 4HEGRENAES O, HALI.INGSTAD O. Model-ai- ded INS with sea current estimation for robust un- derwater navigation [J]. IEEE Journal of Oceanic Engineering, 2011, 36(2) :316-337.
  • 5I.AN J, LI X R, JII.KOV V P, et al. Second order markov chain based multiple-model algorithm for maneuvering target tracking [J]. IEEE Transac- tions on Aerospace and EZectronic Systems, 2013, 49(1) :3 19.
  • 6TOLEDO-MOREO R, ZAMORA-LZQUIERDO M A, UBEDA-MIARRO B, et al.. High integrity IMM-EKF-based road vehicle navigation with low cost GPS/SBAS/INS[J].IEEE Transactions on Intelligent Transportation Systems, 2007, 8 (3) : 491 511.
  • 7I3 X R. Multiple model structure. II. Model set estimation with variable adaptation [J]. IEEETransactions on Automatic Control, 2000, 45 (11) :2047 2060.
  • 8QU H Q, PANG L P, LI S H. A novel interacting multiple model algorithm [J]. Signal Processing, 2009, 89(11) :2171-2177.
  • 9LI X R, BAR SHALOM Y. Multiple-model estima tion with variable structure [J]. IEEE Transactions on Automatic Control, 1996, 41(4) :478 493.
  • 10LI X R, JII.KOV V P, RU J. Multiple-model esti mation with variable structure-Part VI: expected- mode augmentation [J].IEEE Transactions on Aerospace Electronic Systems, 2005, 41:853-867.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部