期刊文献+

似然关系模型在航天软件缺陷预测中的应用 被引量:3

Application of probabilistic relational model to aerospace software defect prediction
下载PDF
导出
摘要 将似然关系模型在描述和推理多属性类之间关系及其不确定性知识方面的优势用于预测软件缺陷,提出了航天软件缺陷预测模型PRM_METHOD。首先,提出了基于软件测试的软件缺陷分类方法,以软件缺陷类关系为例分析了似然关系模型用于航天软件缺陷预测的理论依据;然后,在对人员能力、缺陷数量特征等数据进行定义和泛化等预处理的基础上,描述了提出的预测模型PRM_METHOD,详细阐述其结构、学习过程以及预测过程,并针对数据集的分类操作提出了基于弥合数据缝隙的k-均值聚类方法。最后,以某航天项目软件为例验证了模型PRM_METHOD的实现过程,并以实际测试工作中产生的历史数据作为训练集和验证集进行实验验证。验证结果显示,验证集的记录与预测结果的平均绝对偏差均值为0.086 8,即模型的预测精度为0.913 2,表明该模型对关联关系较为复杂的航天软件缺陷有较好的预测精度。 An aerospace software defect prediction model PRM_METHOD was proposed by use of the advantage of probabilistic relational model in describing and reasoning the relationship between multi-attribute classes and their uncertainty knowledge.First,a software defect classification method based on software test was proposed,and the theoretical basis of the application of probabilistic relational model to the aerospace software defect prediction was analyzed via the relationship between software defect classes.Then,under the definition and generalization of staff capacity and the feature of defect quantity,the model PRM_METHOD was described with its structure,learning and predict process.Moreover,an improved k-average clustering algorithm based on closing data gap was proposed aim at data set classification operation.Finally,an aerospace software was taken as the example to actualize the model,and the practical testing data were used as the training set and validation set to validate it as well.The results show that the average of mean absolute deviation between the validation set and predict result is 0.086 8,which means the prediction accuracy of the model is 0.913 2.Therefore,the conclusion is that the model PRM_METHOD has better prediction accuracy to the aerospace software defect prediction with a more complex associated relationship.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第7期1865-1872,共8页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2011AA7031024G)
关键词 软件缺陷预测 似然关系模型 缺陷分类 聚类分析 software defect prediction probabilistic relational model defect classification clustering analysis
  • 相关文献

参考文献13

  • 1王俊杰,沈湘衡,张波,权巍,陈磊.环境参数与状态参数融合的测试用例集约简方法[J].光学精密工程,2009,17(7):1678-1685. 被引量:6
  • 2CHEN Y, SHENG X H, DU P, et al.. Research on software defect prediction based on data mining[C]. the 2nd International Conference on Comput- er and Automation Engineering (ICCAE), 2010.
  • 3王青,伍书剑,李明树.软件缺陷预测技术[J].软件学报,2008,19(7):1565-1580. 被引量:149
  • 4KUHN D R, WALLACE D R, GALLO A M. Software fault interactions and implications for software testing [J]. IEEE Transactions on Soft- ware Engineering, 2004, 30(6):418-421.
  • 5GETOOR L, FRIEDMAN N, KOLLER D, et al.. Learning probabilistic models of relational structure [C]. the Eighteenth International Conference on Machine Learning, 2001.
  • 6GETOOR L, MIHALKOVA L. Exploiting statisti- cal and relational information on the web and in so- cial media [C]. In Proceedings of the fourth ACM International Conference on Web Search and Data Mining (WSDM '11), 201119-10.
  • 7高滢,齐红,刘杰,刘大有.结合似然关系模型和用户等级的协同过滤推荐算法[J].计算机研究与发展,2008,45(9):1463-1469. 被引量:20
  • 8LESSMANN S, BAESENS B, MUES C, et al.. Benehmarking classification models for software defect prediction., a proposed framework and novel findings [J]. IEEE Transactions on Software Engineering, 2008, 34(4): 485-496.
  • 9刘海,郝克刚.软件缺陷数据的分析方法及其实现[J].计算机科学,2008,35(8):262-264. 被引量:10
  • 10CARD D N. Managing software quality with de- fects [C]. Computer Software and Applications Conference, COMPSAC 2002, Proceedings 26th Annual International, 2002 : 472-474.

二级参考文献53

共引文献193

同被引文献16

  • 1聂林波,刘孟仁.软件缺陷分类的研究[J].计算机应用研究,2004,21(6):84-86. 被引量:39
  • 2王惠文,孟洁.多元线性回归的预测建模方法[J].北京航空航天大学学报,2007,33(4):500-504. 被引量:242
  • 3陆永忠,宋骏礼,谷希谦.基于行为的软件测试过程模型及其应用研究[J].计算机应用,2007,27(5):1238-1240. 被引量:10
  • 4Mantyl~i M V,Itkonen J. How are software defects found? The role of implicit defect detection, individual responsibility, doc- uments, and knowledge [ J ]. Information and Software Technol- ogy,2014,56 : 1597-1612.
  • 5Ma Ying, Zhu Shunzhi, Qin Ke, et al. Combining the require- ment information for software defect estimation in design time [ J]. Information Processing Letters,2014,114(9) :469-474.
  • 6Qin Lei, Zhang He, Huang Fuqun, et al. Classification of air on -board software code defects and investigations [ J ]. Procedia Engineering,2011,15:3577-3583.
  • 7Koru A G, Zhang Dongsong, Emam K, et al. An investigation into the functional form of the size-defect relationship for soft- ware modules [ J ]. IEEE Transactions on Software Engineer- ing, 2009,35 ( 2 ) : 293 -304.
  • 8Marcelo C, Audris M, Jeffrey A, et al. Software dependencies, work dependencies, and their impact on failures [ J ]. IEEE Transactions on Software Engineering, 2009, 35 ( 6 ) : 864 - 878.
  • 9王青,伍书剑,李明树.软件缺陷预测技术[J].软件学报,2008,19(7):1565-1580. 被引量:149
  • 10王俊杰,沈湘衡,张波,权巍,陈磊.环境参数与状态参数融合的测试用例集约简方法[J].光学精密工程,2009,17(7):1678-1685. 被引量:6

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部