期刊文献+

电力系统强迫振荡的同心松弛现象分析 被引量:1

An Analysis to the Concentric Relaxation Phenomenon of Power System Forced Oscillations
下载PDF
导出
摘要 为快速准确定位电力系统强迫功率振荡扰动源,提出强迫振荡平均耗散功率分布的同心松弛规律。在强迫振荡等幅振荡阶段,将系统中的频率偏差和功率偏差用相量表示。通过相量运算,推导了耗散能量分布的2条准则:节点注入平均耗散功率和为0,支路首末端平均耗散功率近似相等。再考虑电网相对于故障所具有的放射式结构,得出了平均耗散功率分布的同心松弛规律。10机39节点仿真验证了这一规律。同心松弛规律将有助于制定大电网强迫振荡扰动源快速定位策略,避免对扰动源的误判。 The concentric relaxation phenomenon of the average power dissipation distribution was proposed in order to locate the source of power system forced oscillations fast and exactly.During the constant amplitude oscillation stage,the frequency deviations and power deviations were represented with phasors.Then two criterion of the distribution of average damped energy were deduced,in which the total power dissipation injected into a node is zero,and this power at the beginning and the end of a branch is nearly equal.The concentric relaxation pattern of average power dissipation distribution was inferred due to the radial structure of power grid.This pattern was verified by a simulation of 10-generator 39-bus system.The concentric relaxation pattern is helpful for drawing up a scheme for fast locating disturbing source of forced oscillation and avoiding the erroneous judgment.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2013年第4期163-170,共8页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(51037003) 国家"863"高技术基金资助项目(2011AA05A119)
关键词 强迫振荡 能量函数 平均耗散功率 同心松弛 forced oscillations energy function average power dissipation concentric relaxation
  • 相关文献

参考文献21

二级参考文献145

共引文献386

同被引文献16

  • 1汤涌.电力系统强迫功率振荡的基础理论[J].电网技术,2006,30(10):29-33. 被引量:170
  • 2MA Jin,ZHANG Pu,FU Hongjun,et al. Application of phasormeasurement unit on locating disturbance source for low- frequency oscillation[J]. IEEE Transactions on Smart Grid, 201 O, 1 (3) : 340-346.
  • 3KUMAR P,YILDIRIM A. Minimum volume enclosing ellipsoids and core sets [J]. Journal of Optimization Theory and Appli- cations,2005,126( 1 ) : 1-21.
  • 4MA Jian,MAKAROV Y V,DIAO Ruisheng,et al. The charac- teristic ellipsoid methodology and its application in power systems[J]. IEEE Transactions on Power Systems,2012,27(4): 2206-2214.
  • 5QUINLAN J R. C4.5:programs for machine learning [M]. San Francisco,USA:Moran Kaufmann Publishers Inc,1993:95-100.
  • 6PAI M A. Energy function analysis for power system stability [M]. Boston,USA:Kluwer Academic Pubiisher,i989:26-33.
  • 7MILOSEVIC B,BEGOVIC M. Nondominated sorting genetic algorithm for optimal phasor measurement placement[J]. IEEE Transactions on Power Systems,2003,18 ( 1 ) : 69-75.
  • 8余一平,闵勇,陈磊,张毅威.周期性负荷扰动引发强迫功率振荡分析[J].电力系统自动化,2010,34(6):7-11. 被引量:57
  • 9刘友波,刘俊勇,Gareth Taylor,刘利民,李俊.面向同步相量轨迹簇规则的电力系统暂态稳定实时评估[J].中国电机工程学报,2011,31(16):32-39. 被引量:17
  • 10宋墩文,杨学涛,丁巧林,马世英,李柏青,王青.大规模互联电网低频振荡分析与控制方法综述[J].电网技术,2011,35(10):22-28. 被引量:129

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部