期刊文献+

一类Hopf代数的不可约表示

On the irreducible representations of a class of Hopf algebras
下载PDF
导出
摘要 讨论Hopf代数Aτ上的有限维不可约表示,并证明这些表示都是一维表示. The finite dimensional irreducible representations of Hopf algebra Aτ are discussed.It turns out that all of these representations are of dimension 1.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2013年第2期1-3,15,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11171291) 高等学校博士学科点专项科研基金(20123250110005) 江苏省高校研究生科研创新计划项目(CXZZ13-0889) 江苏省"青蓝工程"项目
关键词 HOPF代数 不可约表示 Ore-扩张 Hopf algebra irreducible representation Ore-extension
  • 相关文献

参考文献11

  • 1WORONOWICZ S L, ZAKRZEWSKI S. Quantum deformations of the Lorentz group: the Hopf-algebra level [J]. Compositio Math, 1994, 90(2): 211-243.
  • 2WORONOWICZ S L. New quantum deformation of SL(2, C) : Hopf algebra level [J]. Rep Math Phys, 1991, 30(2) : 259-269.
  • 3PARSHALL B, WANG Jianpan. Quantum linear groups [M]//Memoirs of the American Mathematical Society: Number 439. Providence RI: AMS, 1991: 15-30.
  • 4KONDRATOWICZ P, PODLES P. On representation theory of quantum SLq (2) groups at roots of unity [J]. Banach Center Publ, 1997, 40(1): 223-248.
  • 5ROSS S. Quantum groups [M]//Australian Mathematical Society Lecture Series, 19. Cambridge: Cambridge University Press, 2007 : 51-58.
  • 6ABE E. Hopf algebras [M]//Cambridge Tracts in Mathematics, 74. Cambridge: Cambridge University Press, 2004: 122-158.
  • 7张颖,陈惠香.两个Hopf代数的单模及主不可分解模[J].扬州大学学报(自然科学版),2011,14(2):10-12. 被引量:4
  • 8ZAKRZEWSKI S. A Hopf*-algebra of polynomials on the quantum SL(2, R) for a "unitary" R-matrix [J]. Lett Math Phys, 1991, 22(4): 287-289.
  • 9NOWICKI A. Derivations of Ore extensions of the polynomial ring in one variable [J]. Commun Algebra, 2004, 32(9): 3651-3672.
  • 10NOWICKI A. Loeal derivations of Ore extensions of the polynomial ring in one variable[J]. Commun Algebra, 2004, 32(12): 4559-4571.

二级参考文献9

  • 1AUSLANDER M, REITEN I, SMALO S O. Representations theory of Artin algebras [M]. Cambridge: Cam bridge Univ Press, 1995: 1-48.
  • 2MONTGOMERY S. Hopf algebras and their actions on rings[M]// CBMS Series in Math: Vol 82. Provi- dence, R I: Amer Math Soc, 1993: 1-86.
  • 3CIBILS C, ROSSO M. Hopf quivers [J]. J Algebra, 2002, 254(2) : 241-251.
  • 4CHEN Xiao-wu, HUANG Hua-lin, YE Yu, et al. Monomial Hopf algebras [J]. J Algebra, 2004, 275 (1) : 212-232.
  • 5ZHANG Shou-chuan, ZHANG Yao-zhong, CHEN Hui-xiang. Classification of PM quiver Hopf algebras [J]. J Algebra Appl, 2007, 6(6).. 919-950.
  • 6ANDRUSKIEWITSCH N, SCHNEIDER H J. Pointed Hopf algebras [M]. Cambridge: Math Sci Res Inst Publ, 2002, 43: 1-68.
  • 7CIBILS C, LAUVE A, WITHERSPOON S. Hopf quivers and Nichols algebras in positive characteristic [J]. Proc Amer Math Soc, 2009, 137(12): 4029-4041.
  • 8SWEEDLER M E. Hopf algebras [M]. New York: Benjamin, 1969: 237.
  • 9戴丽,董井成.二面体群的量子偶上的表示分类[J].扬州大学学报(自然科学版),2009,12(1):4-6. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部