期刊文献+

基于格子Boltzmann方法的微气体流动速度滑移边界条件的检验 被引量:8

Assessment of Velocity-Slip Boundary Conditions of Micro Gas Flow Based on Lattice Boltzmann Method
下载PDF
导出
摘要 为研究微气体流动的速度滑移边界条件,建立适用于滑移区和过渡区的微气体流动的格子Boltzmann模型,从气体动理学理论及Knudsen层效应出发推导了Knudsen数与无量纲松弛时间的关系,基于Succi的边界处理方法和广义二阶速度滑移边界条件推导出壁面滑移速度和反弹比例系数的计算公式,并以微尺度Poiseuille流动为例,对七类速度滑移边界条件进行研究。计算结果表明,在各个速度滑移模型下,中心线上的无量纲速度的偏差小于边界上的无量纲滑移速度的偏差。Guo模型、Hisa模型、Zhang模型表现较好,其次是Hadjiconstantinou模型,而Cercignani模型、Schamberg模型、Deissler模型的表现较差。 The micro gas flow in the slip and transitional regime was modeled in the lattice Boltzmann method to determine the velocity-slip boundary conditions.First,the relationship between Knudsen number and the dimensionless relaxation time was derived based on the gas kinetic theory and the effect of Knudsen layer.Next,the formulae of the velocity-slip on the wall and the scale factor of bounce-back were derived based on a generalized 2nd order slip boundary conditions and Succi′s method of boundary treatment.Finally,the seven types of velocity-slip boundary conditions in the case of the micro-scale Poiseuille flow were evaluated.The calculated results show that when it comes to the deviation of the dimensionless velocities,evaluated with different velocity-slip boundary conditions,the one in the center line is smaller than that on the boundary;and that the Guo,Hisa and Zhang models outperform Hadjiconstantinou model,and work much better than Cercignani,Schamberg and Deissler models do.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2013年第7期647-653,共7页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金项目(No.50823004) "十一五"国家科技支撑计划(No.2009BAG12A01-C12) 高速铁路基础研究联合基金项目(No.U1234208)
关键词 微气体流动 格子BOLTZMANN模型 Knudsen数 滑移速度 稀薄参数 Micro gas flows Lattice Boltzmann model Knudsen number Slip velocity Rarefaction parameter
  • 相关文献

参考文献26

  • 1岳向吉,巴德纯,刘坤,王光玉,张振厚.干式罗茨真空泵吸气级内流动的瞬态模拟[J].真空科学与技术学报,2012,32(9):850-855. 被引量:20
  • 2Nie X, Doolen G D, Chen S. Lattice-Boltzmann Simulations of Fluid Flows in MEMS[J]. Journal of Statistical Physics,2002, 107(1 - 2) :279 - 289.
  • 3Lim C Y, Shu C, Niu X D, et al. Application of Lattice Boltz- mann Method to Simulate Microchannel Flows[ J]. Physics of Fluids,2002,14(7) :2299- 2308.
  • 4Ansumali S, Karlin I V. Kinetic Boundary Conditions in the Lattice Boltzmaun Method[ J]. Physical Review E, 2002, 66 (2) :064502.
  • 5TangG H,Tao W Q, He Y L. Lattice Boltzmann Method for Gaseous Microflows Using Kinetic Theory Boundary Conditions [J]. Physical Fluids,2005,17(5) :058101.
  • 6NIU X D, SHU C, CHEW Y T. A Lattice Boltzmann BGK Model for Simulation of Micro Flows[ J]. Europhsical Letters, 2004,67(4) :600 - 606.
  • 7Niu X D, Shu C, Chew Y T. Numerical Simulation of Isother- mal Micro Flows by Lattice Boltzmann Method and Theoretical Analysis of the Diffuse Scattering Boundary Condition[ J ]. Intemational Journal of Modem Physics, 2005,16(12) : 1927 - 1942.
  • 8SUCCI S. Mesoscopic Modeling of Slip Motion at Fluid-Solid Interfaces with Heterogeneouscatalysis [ J ]. Physieal Review Letters, 2002,89 (6) : 064502.
  • 9Gou Z L,Zheng C G,Ssi B C. Discrete Lattice Effects on the Forcing Term in the Lattice Boltnnann Method[ J]. Plays Rev, 21302, E65(4) :046308.
  • 10Zhang Y, Qin R, Emerson D R. Lattice Boltnnann Simulation of Rarefied Gas Flows in Microehannels [ J ]. Physical Re- view,2005, E71 (4) :047702.

二级参考文献13

  • 1Troup A P, Turrell D. Dry Pumps Operating under Harsh Con- ditions in the Semiconductor Industry [J]. Journal of Vacuum Science & Technology A ( Vacuum, Surfaces, and Films), 1989,7(3) :2381 - 2386.
  • 2Gottschich U, Hampson S. Corrosive Media and Dry-Running Vacuum Pumps [ J]. World Pumps, 2004,458 : 32 - 34.
  • 3Lessard P A. Dry Vacuum Pumps for Semiconductor Process: Guidelines for Primary Pump Selection [J] .Journal of Vacu- um Science & Technology ( Vacuum, Surfaces, and Films), 2000,A18(4) : 1777 - 1781.
  • 4Troup A P,Dennis N T M.Six Years of Dry Pumping: a Re- view of Experience and Issues [ J]. Journal of Vacuum Sci- ence & Technology (Vacuum, Surfaces, and Films), 1991, A9 (3) :2048 - 2052.
  • 5Tu Jiyuan, Yeoh G H, Liu Chaoqun. Computation Fluid Dy- namics: a Practical Approach [ M ]. Oxford: Butterwotth- Heinemann, 2008:1 - 27.
  • 6Boulon O, Mathes R. Flow Modeling of a Holweck Pump Stage in the Viscous Regime [J]. Vacuum, 2001,60( 1 - 2) : 73 - 83.
  • 7Cheng H P, Chen C J, Cheng P W. Computational Fluid Dy- namics Performance Estimation of Turbo Booster Vacuum Pump[J]. Journal of Fluids Engineering, 2003, 125 (3) : 586 - 589.
  • 8Cheng H P, Chiang M T. Pumping Performance Investigation of a Turbobooster Vacuum Pump Equipped with Spiral- Grooved Rotor and Inner Housing by the Computational Flu- ids Dynamics Method [ J ]. Journal of Vacuum Science & Technology ( Vacuum, Surfaces, and Films ), 2003, A21 ( 4 ) : 1458- 1463.
  • 9Wang X D, Dong J L. Numerical Study on the Performances of Steam-Jet Vacuum Pump at Different Operating Conditions [J]. Vacuum,2010,84(11) : 1341 - 1346.
  • 10Jon R Y, Cheng H P, Chang Y W, et al. Designs, Analyses, and Tests of a Spiral-Grooved Turbobooster Pump [ J]. Jour- nal of Vacuum Science & Technology (Vacuum, Surfaces, and Films) ,2000, A18(3) :1016- 1024.

共引文献19

同被引文献40

  • 1王卫东,贾建援.超薄气膜润滑的雷诺方程修正[J].中国机械工程,2006,17(5):533-535. 被引量:4
  • 2谢翀,樊菁.Navier-Stokes方程二阶速度滑移边界条件的检验[J].力学学报,2007,39(1):1-6. 被引量:19
  • 3SINGH V, BERNEY B, KRISHNAN A. Designing Low Pres- sure Systems with Continuum Models [ J ]. Journal of Vacuum Science & Technology, 1996,A14(3) : 1252 - 1257.
  • 4CHENG J,ZHU Y,DUAN GH,et al. Analysis of Processing Chamber Flow Field Characteristics for an ICP Ctcher Based on Regression Orthogonal Design[ J ]. Jottrnal of Scmiconduc- tors,2008,29(4) :780- 784.
  • 5PFRAHLER J N,BAR-COHEN A,KRAUS A D.Advances in Thermal Modeling of Electronic Components and Systems [ M]. New York: ASME Press, 1990.
  • 6POLIARD W G, PRESENT R D. On Gaseous Self-Diffusion in Long Capillary Tubes [ J ]. Physical Review, 1948,73 (7) : 762.
  • 7BESKOK A, KARNIADAKIS G E. A Model for Flows in Channels,Pipes,and Ducts at Micro and Nano Scales[ J]. Microscale Thermophysical Engineering, 1999, 3 ( 1 ) : 37 - 41.
  • 8Maxwell J C. On Stresses in Raqefied Gases Arising from In- Equalities of Temperature[ J]. Philosophical Transactions of the Royal Society, 1879,170:231 - 256.
  • 9SCHAA S A, CHAMBRE P L. Flow of Raritled Gases[M]. New Jersey:Princeton University Press, 1961.
  • 10EWART T, PERRIER P, GRAUR I, et al. Tangential Mo- memtum Accommodation in Microtube [ J ]. Microfluid Nanofluid, 2007, (3) : 689 - 695.

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部