计算Ore代数上一类矩阵的分块对角型
摘要
在这篇文章中我们应用线性代数的方法来计算Laurent-Ore代数上的一类矩阵相似意义下的分块对角化.在某些特定的条件下(幂等)我们证明了R是等价于一个分块对角的矩阵.
出处
《赤峰学院学报(自然科学版)》
2013年第14期9-10,共2页
Journal of Chifeng University(Natural Science Edition)
参考文献4
-
1王萼芳,石生明.高等代数[M].高等教育出版社,2003.
-
2Levandovskyy, V., Schindelar, K., 2011. Com- puting diagonal form and Jacobson normal form of a matrix using Gr?bner bases.[J].Sym- bolic Comput.46(5),595 - 608.
-
3Thomas Cluzeau,Alban Quadrat, Factoring and decomposing a class of linear functional systems [J].Linear algebra and its application ,324- 381,2007.
-
4刘兰兰,周梦.差分-微分模上多个序的Grbner基及多变量维数多项式[J].系统科学与数学,2012,32(8):964-975. 被引量:1
二级参考文献10
-
1Zhou M, Winkler F. Computing difference-differential dimension polynomials by relative Gr5bner bases in difference-differential modules. J. Symb. Comput., 2008, 43: 726-745.
-
2Levin A B. GrSbner bases with respect to several orderings and multivariable dimension polyno~ mials. J. Symb. Comput., 2007, 42(5): 561-578.
-
3Noumi M. Wronskima determinants and the Gr6bner representation of linear differential equation. Boston, Academic Press, 1988:549-569.
-
4Takayamam N. GrSbner basis and the problem of contiguous relations. Japan J. Appl. Math., 1989, 6: 147-160.
-
5Oaku T, Shimoyama T. A Gr6bner basis method for modules over rings of differential operators. J. Symb. Comput., 1994, 18(3): 223-248.
-
6Carra Ferro G. Differential Gr6bner bases in one variable and in the partial case: Algorithms and software for symbolic analysis of nonlinear systems. Math. Comput. Modelling, 1997, 25: 1-10.
-
7Insa M, Pauer F. GrSbner bases in rings of differential operators. Gr6bner Bases and Applications, London Math. Soc. Lecture Note Series 251, Buchberger B and Winkler F eds. Cambridge UK, Cambridge University Press, 1998.
-
8Pauer F, Unterkircher A. GrSbner bases for ideals in Laurent polynomial rings and their ap- plications to systems of difference equations. Applied Algebra, Algebraic Algorithms and Error- Correcting Codes, 1999, 9: 271-291.
-
9Levin A B. Reduced GrSbner bases, free difference-differential modules and difference-differential dimension polynomials. J. Syrnb. Comput., 2000, 30(4): 357-382.
-
10Zhou M, Winkler F. GrSbner bases in difference-differential modules. Proceedings ISSAC, ACM Press, 2006.
-
1姜永,李德新.一个对称矩阵特征值反问题的唯一性[J].福建农林大学学报(自然科学版),2007,36(4):446-448.
-
2侯双根.广义分块对角矩阵的广义逆矩阵[J].郑州工学院学报,1992,13(2):108-110.
-
3陈汉藻.实对称矩阵的特征向量的一个新算法[J].黄冈师范学院学报,1988,0(3):59-60.
-
4刘声,何淦瞳.分块对角矩阵的加权广义逆[J].贵州大学学报(自然科学版),2010,27(4):19-21. 被引量:1
-
5陈刚,林金官.多元线性递归序列收敛的条件[J].南通大学学报(自然科学版),2014,13(4):82-84.
-
6江声远.关于《应用线性代数》教学的研讨[J].江西师范大学学报(自然科学版),1993,17(3):262-266. 被引量:1
-
7王德生.应用线性代数理论建立数列通项公式的方法[J].辽宁师范大学学报(自然科学版),2002,25(4):431-434.
-
8乐晓莺.数学史融入线性代数教学[J].青年与社会,2014(6):202-202.
-
9郭丽杰.分块对角型矩阵的广义特征值反问题[J].东北电力大学学报,2008,28(6):25-28.
-
10王莲花,张香伟,李战国,王建平.求逆矩阵方法的进一步研究[J].河南教育学院学报(自然科学版),2002,11(3):9-12. 被引量:4