期刊文献+

计算Ore代数上一类矩阵的分块对角型

下载PDF
导出
摘要 在这篇文章中我们应用线性代数的方法来计算Laurent-Ore代数上的一类矩阵相似意义下的分块对角化.在某些特定的条件下(幂等)我们证明了R是等价于一个分块对角的矩阵.
出处 《赤峰学院学报(自然科学版)》 2013年第14期9-10,共2页 Journal of Chifeng University(Natural Science Edition)
  • 相关文献

参考文献4

  • 1王萼芳,石生明.高等代数[M].高等教育出版社,2003.
  • 2Levandovskyy, V., Schindelar, K., 2011. Com- puting diagonal form and Jacobson normal form of a matrix using Gr?bner bases.[J].Sym- bolic Comput.46(5),595 - 608.
  • 3Thomas Cluzeau,Alban Quadrat, Factoring and decomposing a class of linear functional systems [J].Linear algebra and its application ,324- 381,2007.
  • 4刘兰兰,周梦.差分-微分模上多个序的Grbner基及多变量维数多项式[J].系统科学与数学,2012,32(8):964-975. 被引量:1

二级参考文献10

  • 1Zhou M, Winkler F. Computing difference-differential dimension polynomials by relative Gr5bner bases in difference-differential modules. J. Symb. Comput., 2008, 43: 726-745.
  • 2Levin A B. GrSbner bases with respect to several orderings and multivariable dimension polyno~ mials. J. Symb. Comput., 2007, 42(5): 561-578.
  • 3Noumi M. Wronskima determinants and the Gr6bner representation of linear differential equation. Boston, Academic Press, 1988:549-569.
  • 4Takayamam N. GrSbner basis and the problem of contiguous relations. Japan J. Appl. Math., 1989, 6: 147-160.
  • 5Oaku T, Shimoyama T. A Gr6bner basis method for modules over rings of differential operators. J. Symb. Comput., 1994, 18(3): 223-248.
  • 6Carra Ferro G. Differential Gr6bner bases in one variable and in the partial case: Algorithms and software for symbolic analysis of nonlinear systems. Math. Comput. Modelling, 1997, 25: 1-10.
  • 7Insa M, Pauer F. GrSbner bases in rings of differential operators. Gr6bner Bases and Applications, London Math. Soc. Lecture Note Series 251, Buchberger B and Winkler F eds. Cambridge UK, Cambridge University Press, 1998.
  • 8Pauer F, Unterkircher A. GrSbner bases for ideals in Laurent polynomial rings and their ap- plications to systems of difference equations. Applied Algebra, Algebraic Algorithms and Error- Correcting Codes, 1999, 9: 271-291.
  • 9Levin A B. Reduced GrSbner bases, free difference-differential modules and difference-differential dimension polynomials. J. Syrnb. Comput., 2000, 30(4): 357-382.
  • 10Zhou M, Winkler F. GrSbner bases in difference-differential modules. Proceedings ISSAC, ACM Press, 2006.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部