期刊文献+

一种自适应Tikhonov正则化参数估计方法 被引量:4

An adaptive Tikhonov regularization parameter estimation method
原文传递
导出
摘要 为了解决离散线性反问题中正则化参数选择困难的问题,在Tikhonov正则化方法等效统计模型的基础上,提出了一种自适应Tikhonov正则化参数估计方法.将正则化参数选择的问题转换为关于被测信号和测量噪声的超参数的统计推断问题;基于测量噪声潜在的高斯分布特性,可在独立于测量噪声水平的条件下自适应地估计正则化参数.仿真结果表明:从最大化重建信号后验概率分布的角度来看,自适应Tikhonov正则化参数估计方法计算得到的正则化参数可视为具有随机分布特性的最佳正则化参数的近似折中,其对应的重建信号准确度接近于最优重建信号的准确度,且收敛速度较快. To deal with the problem of regularization parameter determination in the discrete linear in- verse problem, an adaptive Tikhonov regularization parameter estimation method (ATRPEM) was proposed based on the equivalent statistical model of the Tikhonov regularization method. The idea of ATRPEM was to recast the regularization parameter determination as the statistical inference of the hyperparameters about the signal measured and the measure noise. Based on the implicit Gaussian dis- tribution property of the measure noise, ATRPEM could adaptively estimate the regularization param- eter without the measure noise level. The simulations show that, from view point of maximizing the posterior density of the reconstructed signal, the parameter estimated by ATRPEM can be seen as the approximately trade-off estimate of the optimum regularization parameter with random property, and the accuracy of the signal reconstructed by ATRPEM approximates to which of the optimum recon- structed signal.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期37-40,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61201055)
关键词 自适应 正则化 参数估计 反问题 统计推断 adaptive regularization parameter estimation inverse problem statistical inference
  • 相关文献

参考文献15

  • 1Kaipio J, Somesalo E. Statistical and computational in- verse problems[M]. Berlin: Springer, 2004.
  • 2Akesson E O, Daun K J. Parameter selection methods for axisymmetric flame tomography through Tikhonov regularization[J]. Appl Opt, 2008, 47: 407-416.
  • 3Bauer F. Some considerations concerning regularization and parameter choice algorithms [J]. Inverse Prob- lems, 2007, 23: 837-858.
  • 4Bauer F, Pereverzev S. Regularization without prelimi- nary knowledge of smoothness and error behavior[J]. European J Appl Math, 2005, 16: 303-317.
  • 5Bauer F, Reiss M. Regularization independent of the noise level: an analysis of quasi-optimality[J]. Inverse Problems, 2008, 24: 055009.1-055009.16.
  • 6Calvetti D, Hansen P C, Reichel L. L-curve curvature bounds via Lanczos bidiagonalization[J-]. Elect Trans Numer Anal, 2002, 14: 20-35.
  • 7Bakushinskii A B. Remarks on choosing a regulariza-tion parameter using the quasi-optimality and ratio cri- terion[J]. USSR Comp Math Math Phys, 1984, 24: 181-182.
  • 8Bauer F, Kindermann S. Recent results on the quasi- optimality principle[J]. Inverse ][I-posed Prob, 2009, 17 ; 5-18.
  • 9Kindermann S, Neubauer A. On the convergence of the quasi-optimality criterion for (iterated) Tikhonov regularization [J]. Inverse Problems and Imaging, 2008, 2(2): 291-299.
  • 10Hamarik U, Palm R, Raus T. On minimization strat- egies for choice of the regularization parameter in ill- posed problems[J]. Numer Funct Anal Optim, 2009, 30: 924-950.

同被引文献35

  • 1李功胜,谭永基,王孝勤.确定地下水污染强度的反问题方法[J].应用数学,2005,18(1):92-98. 被引量:7
  • 2王建军,梁德群,王新年.基于广义交叉检验的自适应约束最小二乘图像恢复[J].大连海事大学学报,2005,31(1):95-98. 被引量:2
  • 3齐东旭,陶尘钧,宋瑞霞,马辉,孙伟,蔡占川.基于正交完备U-系统的参数曲线图组表达[J].计算机学报,2006,29(5):778-785. 被引量:25
  • 4潘沈元,陶鸣,孙爱群,金同铭.雌雄蚕蛹近红外反射光谱的差异及其模式识别[J].昆虫学报,1996,39(4):360-365. 被引量:9
  • 5Seo Y, Morishima H, Hosokawa A. Separation of male and female silkworm pupae by weight: Prediction of separability[J]. The Japanese Society of Agricultural Machinery, 1985,1(47): 191-195.
  • 6Kamtongdee C, Sumriddetchkajorn S, Sa-Ngiamsak C. Feasibility study of silkworm pupa sex identification with pattern matching[J]. Computers & Electronics in Agriculture, 2013, 95(1): 31-37.
  • 7Larson G W, Rushmeier H, Piatko C. A visibility matching tone reproduction operator for high dynamic range scenes[J]. IEEE Transactions on Visualization and Computer Graphics, 1997, 3(4): 291-306.
  • 8Durand F, Dorsey J. Fast bilateral filtering for the display of high-dynamic-range images[J]. Acm Transactions on Graphics, 2002, 21(3): 257-266.
  • 9Fattal R, Lischinski D, Werman M. Gradient domain high dynamic range compression[J]. Acm Transactions on Graphics, 2002, 21(3): 249-256.
  • 10Li Y, Sharan L, Adelson E H. Compressing and companding high dynamic range images with subband architectures[J]. Acm Transactions on Graphics, 2005, 24(3): 836-844.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部