期刊文献+

二阶滑模变结构控制系统的滑模到达条件 被引量:11

Reaching condition of sliding mode in second-order sliding mode variable structure control systems
原文传递
导出
摘要 为了削弱经典滑模变结构控制系统的抖振、简化二阶滑模变结构控制器的计算过程,提出了一个二阶滑模变结构控制系统的滑模到达条件.运用李雅普诺夫稳定性理论和常微分方程理论,得到了控制系统在该到达条件下的两个结果:系统相轨迹能实现在有限时间内收敛于滑动模态,控制系统具有较好的鲁棒性.最后通过该到达条件设计了系统的变结构控制器.仿真结果表明该到达条件能有效抑制系统抖振,并且具有良好的鲁棒性. In order to suppress the system chattering exist in the classical sliding variable structure control and simplify the computational process of second-order sliding variable structure controller, a reaching condition of second-order sliding variable structure control was proposed. When the control system was under the reaching condition, two results were got by applying the ordinary differential e- quations theory and Lyapunov stability theory: the one is the system phase trajectory can converge to the sliding mode in finite time; the other is the control system has excellent robustness. Finally, a system variable structure controller was designed with the reaching condition. Simulation results show that the reaching condition with excellent robustness can suppress the system chattering effectively.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期70-75,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61001154)
关键词 二阶滑模控制 仿射非线性系统 到达条件 抖振 李雅普诺夫函数 second-order sliding mode control nonlinear affine system reaching condition chatte- ring Lyapunov function
  • 相关文献

参考文献12

  • 1Xu J X, Lee T H, Pan Y J. On the sliding mode con- trol for DC servo mechanisms in the presence of un modeled dynamics[J]. Mechatronics, 2003, 13 (7) : 755-770.
  • 2Erbatur K, Kawamura A. Chattering elimination via fuzzy boundary layer tuning [C]//IECON. Sevilla:IEEE, 2002: 2131-2136.
  • 3Levant A. Higher-order sliding modes, differentia- tion and output-feedback control[J]. Int J of Control, 2003, 76(9).. 924-941.
  • 4Bartolini G, Ferrara A, Usai E. Applications of a su boptimal discontinuous control algorithm for uncer- tain second order systems[-J]. Int J of Robust and Nonlinear Control, 1997, 7(4): 299-319.
  • 5Levant A. Higher-order sliding modes, differentia- tion and output-feedback control[J]. Int J of Control, 2003, 76(9): 924-941.
  • 6Emelyanov S V, Korovin S K, Levant A. Higher or- der sliding modes in binary control systems[J]. Sovi- et Physics Doklady, 1986, 31(4): 291-293.
  • 7Levant A. Principles of 2-sliding mode design [J]. Automatica, 2007, 43.. 576-586.
  • 8Levant A. Sliding order and sliding accuracy in slid- ing mode control[-J]. International Journal of Cont- rol, 1993,58: 1247-1263.
  • 9Bartolini G, Ferrara A, Usai E. On multi-input chat- tering-free second-order siding mode control [J]. IEEE Transactions on Automatic Control, 2000, 45 (9) .. 1711-1717.
  • 10Damien Galzi, Yuri Shtessel. UAV formation con- trol using high order sliding modes[C] // AIAA Guidance, Navigation and Control Conference. Den- ver: AIAA, 2005: 1025-1032.

同被引文献111

引证文献11

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部