期刊文献+

复杂动力管路系统多Agent自治控制结构研究 被引量:2

Multi-Agent control architecture for complex marine power piping
原文传递
导出
摘要 针对下一代舰船动力平台对自治能力的要求,提出了适用于复杂动力管路系统自治控制的多Agent智能控制结构,将系统的控制智能分布于单个Agent的结构和多Agent系统的拓扑结构与协作决策机制之中,并依此设计了控制系统.以舰船冷却水系统为实证研究对象,搭建了以控制器硬件在环仿真为核心的多Agent控制系统试验研究平台,分析了任务切换和故障恢复中冷却水系统的状态重构过程.试验表明:所设计的智能控制系统能够减少对操作者的依赖,有效地提高复杂动力管路系统的任务效率和自治控制能力. The intention of this paper is aim at the requirement for the autonomous capability of the next generation marine platforms. A multi-Agent intelligent control architecture suited for marine complex power piping autonomous control was presented. The control intelligence of this system was distributed into individual Agent structure, multi-Agent architecture and cooperation mechanism. The control system based on the architecture was designed and the control target was a marine chilling wa- ter system. A test research platform for the multi-Agent control system which has the character of controller hardware in the loop simulation was established. The state reconfiguration process of chill- ing water system, such as task switch and fault recovery, was analyzed based on the test platform. Test result shows that the intelligence control system based on multi-Agent autonomous control archi- tecture can improve the mission effectiveness and autonomous level of complex marine power piping.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期76-80,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 中国博士后科学基金资助项目(201150M1547)
关键词 多AGENT 动力管路系统 舰船平台 自治控制 控制结构 multi-Agent power piping system marine platform autonomous control control archi- tecture
  • 相关文献

参考文献16

  • 1Kothare U C, Rana R K. Integrated machinery con- trol systems-view of a developing navy[C]//13th In- ternational Ship Control Systems Symposium (SCSS). Orlando.. DoD, 2003.. 112-120.
  • 2Sturtevant G, Socoloski P, Bartlett D, et a[. U.S. Navy smartship integrated ship controls-technology roadmap for performance enhancements[C]//13th In- ternational Ship Control Systems Symposium (SCSS). Orlando: DoD, 2003: 235-246.
  • 3Henry M, Iacovelli M, Thatcher J. DDG-1000 engi- neering control system (ECS) [EB/OL] [2011-12- 27]. http.. //esrdc. mit. edu/library/gSRDC_library/ Henry-DDG-1000.
  • 4Rourke R. Navy DDG-51 and DDG-1000 destroyer programs: background and issues for congress[EB/ OL]. [2011-08-12], http://www, fas. org/sgp/crs/ weapons/RL32109.
  • 5Zivi E. Design of robust shipboard power automation systems[J]. Annual Reviews in Control, 2005, 29 (2) .. 261-272.
  • 6Kam M, Lebaudy A. Toward development of a virtu- al distributed control system[R]. Philadelphia: De- partment of Electrical and Computer Engineering, Drexel University, 2004.
  • 7Lively K, Scheidt D. Mission based engineering plant [C]//Proeeedings of ASNE Reconfiguration and Sur- vivability Symposium. Cambridge.. IEEE, 2005.. 311- 318.
  • 8Paehter M, Chandler P R. Challenges of autonomous control[J]. IEEE Control System, 1998, 18(4) : 92- 97.
  • 9Antsaklis J, Passino gent and autonomous M. An introduction to intelli control[M]. Dordrecht: Kluw er Academic Publishers, 1993.
  • 10Jennings N R, Bussmann S. system-why are they suited to systems? [J ]. IEEE Control Agent-based control engineering complex System Magazine,2003, 23(3): 61-73.

二级参考文献14

共引文献6

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部