摘要
提出了一种通过给定的土中爆炸成腔毁伤效应确定炸点状态的计算反求方法。该方法将确定炸点状态的反问题转化为求解爆炸毁伤效应的计算值与给定值误差函数最小的优化问题。在反求过程中,采用基于误差减小比率技术的多项式近似模型代替土中爆炸数值分析模型,以便提高反求效率。采用Tikhonov正则化方法克服反求过程中出现的病态问题。在此基础上,引入信赖域管理策略判断当前近似模型与实际模型的逼近程度,以确定最优的反求向量。炸点状态反求结果与实验结果的对比分析表明,该方法能够有效且稳定地通过给定的毁伤效应实现炸点状态的反求,这可为炸点状态的设计提供参考。
A computational inverse technique is presented for determining the detonator status in an underground explosion from the given damage effects.In this technique,the detonator status can be determined by minimizing the error functions formulated using the given damage effects and those computed using the forward solvers based on the candidates of the detonator statuses.To reduce the computational cost,the polynomial approximation model based on error reduction ratio is used to replace the actual computational model.The nonlinear Newton's method is employed as the inverse procedure.In order to improve the computational efficiency,the trust region method is adopted to manage the error between the approximation model and the actual one.Additionally,the Tikhonov regularization method is applied to the ill-posed problems.The results demonstrate that the detonator status can be determined from the given damage effects with high efficiency through innovative use of the present method.
出处
《爆炸与冲击》
EI
CAS
CSCD
北大核心
2013年第3期231-237,共7页
Explosion and Shock Waves
基金
国家自然科学基金项目(11202076)
国家重点基础研究发展计划(973计划)项目(2010CB832700)
装备预先研究项目(62501036012)~~
关键词
爆炸力学
反问题
近似模型管理
土中爆炸
正则化方法
牛顿法
mechanics of explosion
inverse problems
approximation model management
underground explosion
regularization method
Newton method