期刊文献+

基于矩阵半张量积方法的随机模糊系统控制器设计 被引量:3

Controller design of stochastic fuzzy systems based on the semi-tensor product method of matrices
原文传递
导出
摘要 利用矩阵半张量积理论研究了随机模糊逻辑和随机模糊系统的控制器设计问题。给出了随机模糊逻辑的概念及相关性质;基于半张量积理论研究了随机模糊控制器,并给出了随机模糊规则的表示形式;确定了随机模糊控制器的结构矩阵和概率转移矩阵,得到了随机模糊推理的代数表达式。数值例子说明了该方法的有效性。 The stochastic fuzzy logic and controller design of stochastic fuzzy systems were investigated based on the the-ory of semi-tensor product of matrices, and some new results about stochastic fuzzy logic and stochastic fuzzy systems were obtained. First, some concepts and properties on stochastic fuzzy logic were given. Then, the design of stochastic fuzzy controller was studied based on the semi-tensor product method, and the new expression of stochastic fuzzy rules was presented. Based on the new expression of fuzzy rules, the complex stochastic fuzzy reasoning was converted into the simple algebraic equation by constructing the structure matrix and the transition probability matrix. Finally, a numer-ical example was provided to demonstrate our new results.
出处 《山东大学学报(工学版)》 CAS 北大核心 2013年第3期30-37,共8页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61074068 61034007 61174036) 山东省泰山学者项目基金资助项目 山东省自然科学基金资助项目(ZR2010FM013 ZR2010FM018)
关键词 半张量积理论 随机模糊逻辑 随机模糊系统 随机模糊集合 控制器 semi-tensor product theory stochastic fuzzy logic stochastic fuzzy system stochastic fuzzy set controller
  • 相关文献

参考文献23

  • 1MEGHDADI A H, AKBARZADEH M R. Probablistic fuzzy logic and probabilistic fuzzy systems[ C]//Proceedings of the2001IEEE International Conference on Fuzzy Systems. Melbourne, Australia:IEEE, 2001:1127-1130.
  • 2FENG G. Analysis and synthesis of fuzzy control system: a model-based approach [M]. Boca Raton: CRC Press, 2010.
  • 3ZADEH L A. Discussion: probability theory and fuzzy logic are complimentary rather than competitive[ J]. Technometrics,1995,37(3) :271-276.
  • 4KWAKERNAAK H. Fuzzy random variables, Part I . :definitions and theorems[ J]. Information Sciences, 1978( 15) :1-29.
  • 5KWAKERNAAK H. Fuzzy random variables, Part II/: algorithms and examples for the discrete case[ J]. Information Sci-ences, 1979(17) :253-278.
  • 6LI W Q, JING Y W, ZHANG S Y. Adaptive state-feedback stabilization for a large class of high-order stochastic nonlinearsystems[ J]. Automatica, 2011, 47(4) :819-828.
  • 7ZHOU S S, REN W Y, LAM J. Stabilization for T-S model based uncertain stochastic systems[ J]. Information Sciences,2011,181(4) :779-791.
  • 8HU L J,MAO X R. Almost sure exponential stabilisation of stochastic systems by state-feedback control [ J ]. Automatica,2008,44(2) :465471.
  • 9GAO Q, FENG G, WANG Y, et al. Universal fuzzy models and universal fuzzy controllers for stochastic non-affine nonlinearsystems[ J]. IEEE Transactions on Fuzzy Systems, 2012. DOI: 10. 1109/TFUZZ. 2012. 2213823.
  • 10LIU Z, LI H X. A probabilistic fuzzy logic system for modeling and control[ J]. IEEE Transaction on Fuzzy Systems, 2005,13(6) :848-859.

二级参考文献1

共引文献5

同被引文献40

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部