期刊文献+

氢修饰与本体碳纳米管和甘氨酸之间相互作用的理论研究

Theoretical investigations on the mutual interaction of one glycine molecule with pristine and H-modified single-walled carbon nanotubes
原文传递
导出
摘要 本研究在密度泛函理论的PW91/DND和PW91/DNP方法的基础上模拟了甘氨酸(Gly)分子与本体扶手椅型单壁碳纳米管(armchain single-walled carbon nanotubes,ASWCNTs)和H修饰的(3,3)扶手椅型碳纳米管(ASWCNT-H)之间的各7种相互作用模式,以及相应的构型变化和能量变化,讨论了H键对Gly与ASWCNT(或者ASWCNT-H)二者结合能的影响。结果表明,Gly和ASWCNT(或者ASWCNT-H)之间的结合能为10~20kJ/mol,属于弱作用;与ASWCNT本体相比,ASWCNT-H和Gly的结合能增加了3~4 kJ/mol;ASWCNT(ASWC-NT-H)和Gly之间结合的强弱和二者之间的电荷转移量存在着密切的正相关。 The interaction modes of one glycine molecule with prinstine and H-modified ( 3, 3 ) armchair single-walled carbon nanotubes were investigated based on PW91/DND and PW91/DNP method. The geometries and energetical changes of each mode were explored. The H-bonds influence on the interaction energies between Glycine and ASWCNT or ASWCNT-H were discussed. The calculations suggested that the binding energy (AE) between glycine and CNT (ASWCNT-H) falled in the scope of 10 - 20 kJ/mol, which belonged to the weak interaction. Compared with the in-teraction with ASWCNT, the binding energy of Gly with ASWCNT-H increased about 3 - 4 kJ/mol. The electron trans-fer values from Gly to ASWCNT (or ASWCNT-H) were closely related with their mutual binding strength.
出处 《山东大学学报(工学版)》 CAS 北大核心 2013年第3期57-62,共6页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(21273291 21003162 21203084) 山东省"泰山学者"建设工程专项经费资助项目
关键词 碳纳米管 甘氨酸 相互作用 电子转移 carbon nanotubes glycine mutual interaction electron transfer
  • 相关文献

参考文献4

二级参考文献69

  • 1LLJIMA S. Helica microtubules of graphitic carbon [ J]. Nature, 1991, 354:56-58.
  • 2KAKADE B, MEHTA R, DURGE A, et al. Electric field induced, superhydrophobic to superhydrophilic switching in muhiwalled carbon nanotube [ J ]. Nano I.ett, 2008, 8 (9) : 2693- 2696.
  • 3LI YX, WANG P, WANG L, et al. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing apphcations [ J]. Biosensors and Bioelectronics, 2007, 22(12):3120-3125.
  • 4HONDA Y, HARAMOTO T, TAKESHIGE M, et al. Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance [ J ]. Electrochemical and solid state, 2007, 10(4) :A106-A110.
  • 5RAJA P M V, CONNOLLEY J, GANESAN G P, et al. Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells[.[]. Toxicology Letters, 2007, 169:51-63.
  • 6DING Y J, LIU J, JINX Y, et al. Poly-L-lysine/hydroxyapatite/carbon nanotube hybrid nanocomposite applied for piezoelectric immunoassay of carbohydrate antigen 19-9[J]. Analyst, 2008, 133:184-190.
  • 7CHEN R J, BANGSARUNTIP S, DROUVALAKIS K A, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors[J]. PNAS, 2003, 100:4984-4989.
  • 8Dumortier H, Lacotte S, Pastorin G, et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells[J]. Nano Lett, 2006, 6(7): 1522-1528.
  • 9ZHOU H Y, MU Q X, GAO N N, et al. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response[J]. Nano Letters, 2008, 8(3) :859-865.
  • 10JOSHI A, PUNYANI S, BALE S S, et al. Nanotube-assisted protein deactivation [ J ]. Nature Nanotechnology, 2008, 3 : 41-45.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部