期刊文献+

贝叶斯网络结构学习分析 被引量:10

Learning Bayesian Network Structure
下载PDF
导出
摘要 贝叶斯网络结构学习(以下简称结构学习)的目标是寻找对先验知识和数据拟合得最好的网络结构。结构学习有两种方式,一种是模型选择,即选择一个最好的网络结构;另一种是选择性的模型平均,即选择合适数量的网络结构,以这些网络结构代表所有的网络结构。 In this paper the analysis of principle and process of Bayesian network structure learning is given. Bayesian network structure learning is a process that seeks the best network structure fitting the prior knowledge and data. The computing of posterior can be closed when data are completed and some other conditions are satisfied,while the computing is not closed when some data are missing.One solution for missing data is fill-in methods, another is to approximate the likelihood of structure, then to compute the probabilities of structure.
出处 《计算机科学》 CSCD 北大核心 2000年第10期77-79,共3页 Computer Science
基金 国家重点基础研究发展计划项目 国家自然科学基金 "九五"国家攀登计划预选项目
关键词 贝叶斯网络 结构学习 分析 学习过程 Bayesian networks ,Scoring function,Searching method
  • 相关文献

参考文献3

  • 1[1]Heckerman D. Learning Bayesian Networks: [Technical Report MSR-TR-95-02]. Microsoft Research, Microsoft Corporation, 1995
  • 2[2]Friedman N. Bayesian Network Classifiers. Machine Learning, 1997,29: 131~163
  • 3[3]Heckerman D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1997,1: 79~119

同被引文献68

  • 1李韵喻,梁有珍,甄文喜,张光儒,马喜平.考虑光伏非线性相关性的电力系统概率潮流计算[J].电网与清洁能源,2019,35(6):69-75. 被引量:12
  • 2杨世凤,汪懋华,邝朴生,马跃进.机器故障诊断最优搜索策略的求解[J].农业机械学报,1997,28(S1):75-80. 被引量:2
  • 3顾力刚.VDT作业空间的设计研究[J].工业工程,2007,10(2):46-49. 被引量:3
  • 4J Pearl. Probabilistic Reasoning inIntelligent Systems: Network of Plausible Inference. San Francisco, CA: Morgan Kaufmann,1988
  • 5J Suzuki. A construction of bayesian networks from databases based on a MDL scheme.In: Proc of the 9th Conf on Uncertainty in Artificial Intelligence. San Mateo, CA: MorganKaufmann, 1993. 266~273
  • 6Y Xiang, S K M Wong. Learning conditional independence relations from aprobabilistic model. Department of Computer Science, University of Regina, CA, Tech Rep:CS-94-03, 1994
  • 7D Heckerman. Learning bayesian network: The combination of knowledge andstatistical data. Machine Learning, 1995, 20(2): 197~243
  • 8J Cheng, D A Bell, W Liu. Learning belief networks from data: An information theorybased approach. In: Proc of the 6th ACM Int'l Conf on Information and KnowledgeManagement. Las Vegas,USA:ACM Press, 1997. 325~331
  • 9S K M Wong. An extended relational data model for probabilistic reasoning. Journalof Intelligent Information Systems, 1997, 9(2): 181~202
  • 10S K M Wong, C J Butz, D Wu. On the implication problem for probabilisticconditional independence. Department of Computer Science, University of Regina, CA, TechRep: CS-99-03, 1999

引证文献10

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部