期刊文献+

用贝叶斯网络进行因果分析 被引量:5

Bayesian Causal Analysis
下载PDF
导出
摘要 因果分析是贝叶斯网络的一个重要应用领域。因果分析不同于相关分析,无论对数据分析、扰动分析还是预测都是十分重要的。贝叶斯网络虽然有一定的因果语义(我们常常用变量的因果关系构造贝叶斯网络结构),但贝叶斯网络是条件独立性的表示,因此我们不能不加限定地用贝叶斯网络进行因果分析。 The Bayesian causal analysis includes two techniques, one of which takes advantage of Bayesian network structure learning under the Causal Markov assumption and the presupposition that hidden variables are absent, and the other uses canonical form influence diagram. The two techniques possess their distinctive characteristics,and ought to be selected and put to use in the light of specific conditions.
出处 《计算机科学》 CSCD 北大核心 2000年第10期80-82,76,共4页 Computer Science
基金 国家重点基础研究发展计划项目 国家自然科学基金 "九五"国家攀登计划预选项目
关键词 贝叶斯网络 因果分析 马尔科夫假设 预测 Bayesian causal analysis ,CausalMarkov assumption,Canonical form influence diagram
  • 相关文献

参考文献4

  • 1[1]Heckerman D. A Bayesian Approach to Causal Discovery: [Technical Report MSR-TR-97-05]. Microsoft Research, Microsoft Corporation, 1994
  • 2[2]Heckerman D. A Bayesian Approach to Learning Causal Networks: [Technical Report MSR-TR-95-04]. Microsoft Research, Microsoft Corporation, 1995
  • 3[3]Heckerman D. Learning Bayesian Networks: [Technical Report MSR-TR-95-02]. Microsoft Research, Microsoft Corporation, 1995
  • 4[4]Heckerman D. Learaning Bayesian networks:The Combination of Knowledge and Statistical Data. Mcahine Learning, 1995,20:197~243

同被引文献34

  • 1李俭川,陶利民,胡茑庆,温熙森.设备智能故障诊断与维修支持技术研究[J].仪器仪表学报,2002,23(z1):244-245. 被引量:1
  • 2周成虎.全空间地理信息系统展望[J].地理科学进展,2015,34(2):129-131. 被引量:166
  • 3廖楚江,杜清运.GIS空间关系描述模型研究综述[J].测绘科学,2004,29(4):79-82. 被引量:30
  • 4维之.论因果关系的定义[J].青海社会科学,2001(1):117-121. 被引量:5
  • 5杜世宏,秦其明,王桥.空间关系及其应用[J].地学前缘,2006,13(3):69-80. 被引量:24
  • 6J Pearl. Probabilistic Reasoning inIntelligent Systems: Network of Plausible Inference. San Francisco, CA: Morgan Kaufmann,1988
  • 7J Suzuki. A construction of bayesian networks from databases based on a MDL scheme.In: Proc of the 9th Conf on Uncertainty in Artificial Intelligence. San Mateo, CA: MorganKaufmann, 1993. 266~273
  • 8Y Xiang, S K M Wong. Learning conditional independence relations from aprobabilistic model. Department of Computer Science, University of Regina, CA, Tech Rep:CS-94-03, 1994
  • 9D Heckerman. Learning bayesian network: The combination of knowledge andstatistical data. Machine Learning, 1995, 20(2): 197~243
  • 10J Cheng, D A Bell, W Liu. Learning belief networks from data: An information theorybased approach. In: Proc of the 6th ACM Int'l Conf on Information and KnowledgeManagement. Las Vegas,USA:ACM Press, 1997. 325~331

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部