期刊文献+

信度网中条件概率表的学习 被引量:7

Learning CPT in Belief Networks
下载PDF
导出
摘要 一、引言信度网B的学习包括结构B(?)的学习和条件概率表B_p的学习。因果马尔可夫条件原理表明:如果图形G是一个随机变量集合X的因果图,那么图形G也是该随机变量集合的联合概率分布所对应的信度网的结构图。根据这一原理,在实际应用中。 Learning with a belief network is to build its two basic components from data: a network structure and a set of conditional probability tables. It is of crucial importance in the practical application of belief networks,so is one of the current hot research topics. In this paper,we discuss approaches to learn conditional probability tables from a set of data,given a fixed network structure. We will analyze two representative exact algorithms and three widely used approximate algorithms:maximum likelihood estimation, maximum a posterior, EM algorithm, gradient ascent algorithm and Gibbs sampling algorithm,in order for users to choose based on their advantages and shortcomings.
出处 《计算机科学》 CSCD 北大核心 2000年第10期88-92,共5页 Computer Science
基金 国家自然科学基金 教育部跨世纪优秀人才基金
关键词 信度网 条件概率表 贝叶斯统计 Belief network, Learning, CPT, Incomplete data, Complete data
  • 相关文献

参考文献14

  • 1[1]Spirtes P,et al. Causation,Prediction,and Search. SpringVerlag,New York 1993
  • 2[2]Fisher R A. Theory of Statistical Estimation. In:Proc. Of the Cambridge Philosophical Society, 1925,22: 700~715
  • 3[3]Dawid A P,Lauritzen S L. Hyper Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics, 1993,21 (3)
  • 4[4]Dempster A,et al. Maximum likelihood form incomplete data via the EM algorithm. Journal of the Royal statistical Society, 1977 ,B39:1~38
  • 5[5]Russel S, et al. Local learning in probabilistic network with hidden variables. In: Proc. Of the 14-th IJCAI, Montreal, Canada, Morgan Kaufmann, 1995.1146~1152
  • 6[6]Lauritzen S. The EM algorithn for graphical association models with missing data. Computational Statistical and Data Analyses, 1995,19:191~201
  • 7[7]Bayes T R. An essay towards solving a problem in the doctrine of chance. Phil. Trans. Sic. , London, PP53,370, 1763
  • 8[8]Heckerman D. A Tutorial on Learning With Bayesian Networks: [Technial Report MSR-TR-95-06]. 1995
  • 9[9]Hrycej T. Gibbs Sampling in Bayesian Networks. Artificial Intelligence, 1990,46: 351~363
  • 10[10]York J. Use of the Gibbs sampling in expert systems. Artificial Intelligence, 1992,56:115~130

同被引文献23

  • 1Cheng J, Bell D A, Liu W. An algorithm for Bayesian network construction from data[A]. Proceedings of AI&STAT97[C]. Florida: Ft. Lauderdale,1997.
  • 2Heckerman D, Geiger D, Chickering D. Learning Bayeisan networks: the combination of knowledge and statistical data[J]. Machine Learning, 1994,20:197--243.
  • 3Pearl J. Probabilistic Reasoning in Intelligence Systems: Networks of Plausible Inference[M]. Palo Alto, CA, U.S.A. : Morgan Kaufmann, 1988.
  • 4Ibarguengoytia P H. Real time intelligent sensor validation[J]. IEEE Transaction on Power System, 2001, 16(4) :770--775.
  • 5Heckerman D. et al. A Bayesian Approach to Causal Discovery[R], Technical Report, MSR-TR-97-05, 1991.
  • 6Heckerman D. Bayesian Networks for Data Mining[J]. Data Mining and Knowledge Discoveryl, 1997:79-119.
  • 7Qin Zhang, Probabilistic Reasoning Based on Dynamic Causality Trees/diagrams, Reliability Engineering and System Safety, 1994, 46:209-220.
  • 8Heckerman D. A tutorial on I-arning With Bayesian Networks. Microsoft Research Technical Report, MSR-TR-95-06, Redmond, WA, March 1995.
  • 9Dempster A, Laird N, Rubin D. Maximum Likelihood From Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B, 1977, 39:1-38.
  • 10Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, USA: Morgan Kaufmann, 1988.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部