摘要
运用KrylovBogoliubov慢变参数法,研究了含有立方非线性粘性阻尼双线性滞迟振子简谐激励响应计算问题,并根据具有周期系数的常微分方程Floquet理论分析了定常响应的稳定性,指出了由于立方非线性因素的存在,响应的幅频曲线可能出现鞍结分叉,即跳跃现象。
By the Krylov-Bogoliubov method,the response computation of a forced vibration of the viscous damping bamping bilinear hysteretic oscillator with cubic restoring force is studied. The approach is examined by fourthorder Runge-Kutta numerical integration.The Floquet theory is applied to determining the stability of periodic solutions. Through the numerical and theoretical investigation, a conclusion that the saddle-node bifuration due to the cubic nonlinear will happen under higher level exciting is reached.
出处
《机械工程学报》
CSCD
北大核心
2000年第10期27-29,58,共4页
Journal of Mechanical Engineering
基金
中国博士后科学基金资助项目
关键词
非线性振动
滞迟振子
响应计算
Nonlinear vibration Bilinear hysteretic oscillator Response computation