期刊文献+

基于血管增强滤波的脑部静脉分割新方法 被引量:2

A New Method for Brain Vein Segmenting Based on Vessel Enhancing Filtering
下载PDF
导出
摘要 目的将本身灰度不均的静脉从有噪声干扰、结构复杂的脑部磁敏感加权图像中准确地分割出来。方法提出基于血管增强滤波联合动态阈值分割和动态阈值区域生长的血管提取方法。前者分割出部分静脉作为种子点,后者生长至几乎全部静脉。结果在重度噪声和干扰的仿真图像中,可以达到90%以上的正确率;在临床图像中,能准确地提取出了静脉,清晰地显示了静脉的脉络结构。结论上述方法可以准确地实现脑部磁敏感加权图像中的静脉分割,有效地避免误分割,同时具有很好的鲁棒性。 Objective To segment veins from brain susceptibility weighted images with inhomogeneous background and veins, noises and complex structures. Methods Based on vessel enhancing filtering, an adaptive threshold segmenting method and an adaptive threshold region growing method were proposed. The former method was used to exactly segment part of veins from the original images. Taking the veins segmented by the former method as seeds, the later method was used to extract nearly al the veins. Results For simulation data with serious noises and interferences, correct rate above 90% was achieved. And for clinical data, the veins were extracted accurately and the structures of veins were displayed clearly. Conclusions The methods can extract veins from the brain susceptibility weighted images exactly and avoid false segmentation of the other structures effectively. The methods are very robust and stable.
出处 《中国医疗器械杂志》 CAS 2013年第4期240-243,247,共5页 Chinese Journal of Medical Instrumentation
基金 上海交通大学医工交叉研究基金项目(YG2009MS02)
关键词 磁敏感加权图像 静脉分割 血管增强滤波 动态阈值分割 动态阈值区域生长 susceptibility weighted images, vein segmenting, vessel enhancing filtering, adaptive threshold segmenting, adaptivethreshold region growing fundus image
  • 相关文献

参考文献13

二级参考文献47

  • 1姜保东,冯晓源,李克.脑CT静脉成像技术及临床应用[J].中国医学计算机成像杂志,2005,11(5):295-299. 被引量:20
  • 2王彩云,张强,薛敏.磁化率加权成像:一种对颅内血管疾病敏感的MRI技术[J].国外医学(临床放射学分册),2007,30(2):135-140. 被引量:7
  • 3Reichenbach J, Barth M, Haacke EM, et al. High-resolution MR venography at 3.0 Tesla [J]. J Comput Assist Tomogr,2000,24 (6) :949 -957.
  • 4Haack EM, Xu Yingbiao, Cheng Yuchung, et al. Susceptibility weighted imaging (SWI) [J]. Magnetic Resonance in Medicine, 2004 ,52:612 - 618.
  • 5Jenkinson M. Fast, automated, N-dimensionai phase-unwrapping algorithm [ J]. Magnetic Resonance in Medicine,2003,49 : 193 - 197.
  • 6Bagher-Ebadian H, Jiang Quart, Ewing JR. A mdified fourier-based phase unwrapping algorithm with an application to MRI venography [ J ]. J. Magn Resort Imaging,2008,27 : 649 - 652.
  • 7Cusack R, Papadakis N. New robust 3-D phase unwrapping algorithms : application to magnetic field mapping and undistorting echoplanar images [ J ]. NeuroImage, 2002,16 : 754 - 764.
  • 8Abbas K. A new recurrent approach for phase unwrapping [ J ]. International Journal of Applied Science and Engineering,2005, 3(2) :135 - 143.
  • 9Ying Lei, Liang Zhepe, Munson DC, et al. Unwrapping of MR phase images using a markov random field model [ J ]. IEEE Trans Medical Imaging,2006,25 ( 1 ) : 128 - 136.
  • 10Chavez S, Xiang Qingsnn, An Li. Understanding phase maps in MRI:A New Cutline Phase Unwrapping Method[ J]. IEEE Trans Medical Imaging,2002,21 ( 8 ) :966 - 977.

共引文献86

同被引文献23

  • 1段先知,丁亚军,钱盛友,李勇,邹孝.改进型快速ICA算法与数学形态学结合的图像分割方法[J].微电子学与计算机,2015,32(2):80-83. 被引量:3
  • 2Adams R,Bischof L.Seeded region growing.Pattern Analysis and Machine Intelligence,IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(6):641-647.
  • 3Zanaty EA,Asaad A.Probabilistic region growing method for improving magnetic resonance image segmentation.Conn Sci,2013,25(4):179-196.
  • 4张玲.基于模糊理论及其扩展的图像分割研究及应用.济南:山东大学,2012.
  • 5Del Fresno M,Venere M,Clausse A.A combined region growing and deformable model method for extraction of closed surfaces in 3D CT and MRI scans.Comput Med Imaging Graph,2009,33(5):369-376.
  • 6Palomera-Perez MA,Martinez-Perez ME,Benitez-Perez H,et al.Parallel multi-scale feature extraction and region growing:application in retinal blood vessel detection.IEEE Trans Inf Technol Biomed,2010,14(2):500-506.
  • 7Cseh Z.Neural networks combined with region growing techniques for tumor detection in[18F]-fluorothymidine dynamic positron emission tomography breast cancer studie.SPIE,2013:8670.
  • 8李兴民.八元数分析.北京:北京大学,1998.
  • 9刘伟.八元数及Clifford代数在数字图像处理中的应用.广州华南师范大学,2010.
  • 10Hooshyar S,Khayati R.Retina vessel detection using fuzzy ant colony algorithm.Canadian Conference Computer and Robot Vison,2010:239-244.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部