摘要
n次多项式f(x)在Q上不可约的一个充要条件是多项式xnf(1x)在Q上不可约.本文利用反证法对这个充要条件在GF(2)中做了一个推广,并进一步证明了f(x)在GF(2)中本原当且仅当xnf(1x)在GF(2)本原.
Let f(x) be a polynomial of degree tt over Q ,f(x) is irreducible over Q if and only if xnf(1) is irreducible over Q. In this paper, the theorem is generalized over GF(2) by reduction ad absurdum proof. And fur ther proof thatf(x) is primitive over GF(2) if and onry is primitive overGF(2) .
出处
《洛阳师范学院学报》
2013年第8期4-5,共2页
Journal of Luoyang Normal University
关键词
反证法
有限域
不可约
本原多项式
reduction ad absurdum proof
finite field
rreduclhIe primitive