期刊文献+

低氧适应的线粒体调控机制研究进展 被引量:10

HOW Mitochondria Play a Role in Hypoxic Adaptation
下载PDF
导出
摘要 氧气对于生物体不可或缺,当细胞面临低氧胁迫时通过诱导低氧基因做出应答。长期以来线粒体都被认为是氧浓度感受器,其呼吸链为低氧信号产生所必需,但具体机制仍不清楚,可能通过呼吸链产生ROS调控PHD活性或ROS、NO共同作用蛋白酪氨酸硝化反应产生低氧信号;线粒体基因突变和细胞代谢通路改变、呼吸链效率调控也在机体低氧适应过程中发挥重要作用。本文对线粒体如何参与生物低氧适应的机制进行综述,以期引起更多研究者对生物低氧适应的关注和对线粒体更深入系统的研究。 O2 is essential to animals, and animal's survival is threatened when cells are deprived of 02. Eukaryotic cells respond to low-oxygen concentrations by upregulating hypoxic genes. Mito- chondria have long been considered as a likely site of oxygen sensing, and mitochondrial respiratory chain is required for hypoxic signaling, though its underlying role in this process has been unclear. Mitochondria may regulate the ROS produced by respiratory chain to control the enzyme activity of PHD, or sense oxygen through the protein tyrosine nitration reaction which is the combined effect of both ROS and NO produced by mitochondria. The mtDNA mutations, cell metabolism pathway changes and respiratory chain efficiency regulations also play important roles in adaptation to hypoxia. How mitochondria play a key role in hypoxic adaptation will be reviewed, hoping more attention will be caught on the research of hypoxic adaptation and mitochondria.
出处 《畜牧兽医学报》 CAS CSCD 北大核心 2013年第7期993-999,共7页 ACTA VETERINARIA ET ZOOTECHNICA SINICA
基金 国家自然科学基金(31272403) 国家绒毛用羊产业技术体系(CARS-40-01)
关键词 线粒体 低氧 呼吸链 氧感受器 ROS NO mitochondria hypoxic respiratory chain O2 sensor ROS NO
  • 相关文献

参考文献47

  • 1PAPA S. Mitochondrial oxidative phosphorylation changs in the life span molecular aspects and physiopathological implications[J]. Biochim Biophys Acta, 1996,1276:87-105.
  • 2STILLER J W, REEL D E, JOHNSON J C. A single origin of plastids revisited:convergent evolution in organellar genome content[J]. J Phycol, 2003, 39: 95-105.
  • 3LE MOINE C M R, MORASH A J, MCCLELLAND G B.Changes in HIF-1α protein, pyruvate dehydrogenase phosphorylation, and activity with exercise in acute and chronic hypoxia[J].Am J Physiol Regul Integr Comp Physiol, 2011, 301: 1098-1104.
  • 4LIN Y Q, XU Y O, YUE Y, et al. Differences in mitochondrial gene expression profiles, enzyme activities and myosin heavy chain types in yak versus bovine skeletal muscles[J]. Genet Mol Res, 2012, 11 (3): 2871-2877.
  • 5XING G Q, QUALLS C, HUICHO L, et al. Adaptation and mal-adaptation to ambient hypoxia; Andean, ethiopian and himalayan patterns[J].PLoS ONE, 2008, 3(6): e2342.
  • 6张浩,吴常信,强巴央宗,凌遥,唐晓惠.藏鸡心脏高海拔低氧适应相关酶的研究[J].中国应用生理学杂志,2008,24(2):233-236. 被引量:8
  • 7YI X, LIANG Y, HUERTA-SANCHEZ E, et a1. Sequencing of 50 human exomes reveals adaptation to high altitude[J]. Science, 2010, 329(75): 75-78.
  • 8KIM J, TCHERNYSHYOV I, SEMENZA G L, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metab, 2006, 3: 177-185.
  • 9SEMENZA G L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1[J]. J Biol Chem, 2007, 405: 1-9.
  • 10DEHNE N, BRüNE B. Sensors, transmitters, and targets in mitochondrial oxygen shortage-A hypoxia-Inducible factor relay story[J]. Antioxid Redox Signal, 2012, Sep6.

二级参考文献6

共引文献7

同被引文献161

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部