期刊文献+

归一Laplacian矩阵有监督最优局部保持映射故障辨识 被引量:7

Fault Identification Method Based on Normalized Laplacian-based Supervised Optimal Locality Preserving Projection
下载PDF
导出
摘要 提出基于归一化Laplacian矩阵有监督最优局部保持映射(Normalized Laplacian-based supervised optimal localitypreserving projection,NL-SOLPP)维数化简的故障辨识方法。构造全面表征不同故障特性的时频域特征集,利用NL-SOLPP将高维时频域特征集自动约简为区分度更好的低维特征矢量,并输入到Shannon小波支持向量机中进行故障模式辨识。NL-SOLPP结合流形局部结构和类标签来设计相似加权矩阵,并使输出基矢量统计不相关和相互正交,提高了故障辨识精度。深沟球轴承故障诊断和空间轴承寿命状态辨识实例验证了该方法的有效性。 A novel fault diagnosis method based on feature compression with normalized Laplacian-based supervised optimal locality preserving projection (NL-SOLPP) is proposed. The time-frequency domain feature set is first constructed to completely characterize the property of each fault. NL-SOLPP is introduced to automatically compress the high-dimensional time-frequency domain feature sets of training and test samples into the low-dimensional eigenvectors which have better discrimination. The low-dimensional eigenvectors of training and test samples are input into Shannon wavelet support vector machine (SWSVM) to carry out fault identification. NL-SOLPP considers both local information and class labels in designing the similarity weight matrix and requires the output basis vectors to be statistically uncorrelated and orthogonal, therefore, it achieves higher fault identification accuracy. Fault diagnosis example on deep groove ball bearings and life state identification example on one type of space bearing demonstrated the effectivity of proposed method.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第13期100-107,共8页 Journal of Mechanical Engineering
基金 四川大学青年教师科研启动基金(2012SCU11051) 重庆市自然科学杰出青年基金(CQ cstc2011jjjq70001) 国家自然科学基金(51275546)资助项目
关键词 时、频域特征集 局部保持映射 维数化简 流形学习 故障辨识 Time-frequency domain feature set Locality preserving projection Dimension reduction Manifold learningFault identification
  • 相关文献

参考文献12

二级参考文献54

共引文献153

同被引文献67

  • 1王虹,唐力伟,栾军英,肖志松,郑海起.基于角域同步平均技术的内燃机失火故障诊断[J].振动.测试与诊断,2005,25(2):143-145. 被引量:9
  • 2阳建宏,徐金梧,杨德斌,黎敏.基于主流形识别的非线性时间序列降噪方法及其在故障诊断中的应用[J].机械工程学报,2006,42(8):154-158. 被引量:31
  • 3于德介,陈淼峰,程军圣,杨宇.一种基于经验模式分解与支持向量机的转子故障诊断方法[J].中国电机工程学报,2006,26(16):162-167. 被引量:45
  • 4陈果.基于遗传算法的支持向量机分类器模型参数优化[J].机械科学与技术,2007,26(3):347-350. 被引量:40
  • 5Dong Sik Gu, Jae Gu Kim, Young Su An, et al. Detectionof faults in gearboxes using acoustic emission signal[J].Journal of Mechanical Science and Technology, 2011,25(5): 1279-1286.
  • 6D. Mba, Raj B. K. N. Rao. Development of acousticemission technology for condition monitoring anddiagnosis of rotating machines ; bearings, pumps,gearboxes, engines and rotating structures[J]. The Shockand Vibration Digest, 2006, 38(1): 3-16.
  • 7Manish M, Henry, Joe Q S, et al. Multivariate processmonitoring and fault diagnosis by multi- scale PCA[J].Computers and Chemical Engineering, 2002,26(9):1281-1293.
  • 8Manish M, Henry, Joe Q S, et al.Multivariate process monitoring and fault diagnosis by multi-scale PCA[J].Computers and Chemical Engineering, 2002,26(9):1281- 1293.
  • 9Tianhao Zhang, Jie Yang, Deli Zhao, et al. Linear lo- cal tangent space alignment and application to face rec- ognition [ J ]. Neuroeomputing, 2007, 70 ( 7-9 ) 1 547--1 553.
  • 10Feng Li, Jiaxu Wang, Baoping Tang, et al. Life grade recognition method based on supervised uneorrelated orthogonal locality preserving Projection and K-nearest neighbor classifier[J]. Neurocomputing, 2014, 138; 271--282.

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部