期刊文献+

可微函数的Hermite-Hadamard-Fejér型不等式

Hermite-Hadamard-Fejér Type Inequalities for Differentiable Mappings
下载PDF
导出
摘要 借助与凸函数的Hermite-Hadamard-Fejér型不等式有关的恒等式,对于其导数的绝对值的幂具有凸性的函数,导出了一些Hermite-Hadamard-Fejér型不等式,推广了有关文献的结果. Based on the identities relating to the weighted inequalities of Hermite-Hadamard-Fej6r integral inequality for convex functions, this paper derived some Hermite-,I-Iadamard-Fej6r type inequalities for differentiable convex functions that first derivative in absolute value aroused to the qth(q ≥1) power are convex.
出处 《湖南理工学院学报(自然科学版)》 CAS 2013年第2期1-5,23,共6页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
关键词 Hermite-Hadamard-Fejér型不等式 凸函数 积分不等式 可导函数 Hermite-Hadamard-Fej6r type inequalities convex functions integral inequalities differentiable mappings
  • 相关文献

参考文献8

  • 1Kumaci U S. Improvement and further generalization of inequalities for differentiable mappings and Applications. Computers and Math. with Appl, 2008, 55(3): 485-493.
  • 2Kirmaci U S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput, 2004, 147:137-146.
  • 3Karrnaci U S, Ozdemir M.E. On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput, 2004, 153:361-368.
  • 4Dragomir S S, Agarwal R P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett., 1998, 11 (5): 91-95.
  • 5Pcarce C E M, Pecaric J. Inequalities for differentiable mappings with application to special means and quadrature formula. Appl. Math. Lett., 2000, 13: 51-55.
  • 6Fejer L. Uber die Fourierreihen II, Math. Naturwiss, Anz. Ungar. Akad. Wiss., 1906, 24:369-390.
  • 7时统业,焦寨军,谢井.与凸函数有关的两个加权Hadamard型不等式[J].湖南理工学院学报(自然科学版),2013,26(1):1-5. 被引量:2
  • 8Yang G S, Hwang D Y, Tseng K L. Some inequalities for differentiable convex and concave mappings. Computer Methods in Applied Mechanics and Engineering. 2004, 47:207-216.

二级参考文献7

  • 1lOrmacl U S. Improvement and further generalization of inequalities for differentiable mappings and Applications[J]. Computers and Math. with Appl, 2008, 55(3): 485-493.
  • 2Kirmacl U S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula[J]. Appl. Math. Comput, 2004, 147:137-146.
  • 3Klrro, acl U S, Ozdemir M.E. On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula[J]. Appl. Math Comput, 2004, 153:361-368.
  • 4Dragomir S S, Agarwal R P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula[J] Appl. Math. Lett, 1998, 11 (5): 91-95.
  • 5Pearce C E M, Pecaric J. Inequalities for differentiable mappings with application to special means and quadrature formula[J]. Appl. Math. Lett, 2000, 13 51-55.
  • 6Fej6r L. Ober die Fourierreihen II, Math.Naturwiss, Anz. Ungar. Akad. Wiss, 1906, 24:369-390.
  • 7Yang G S, Hwang D Y, Tseng K L. Some inequalities for differentiable convex and concave mappings[J]. Computer Methods in Applied Mechanics and Engineering. 2004, 47:207-216.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部