期刊文献+

PSO-GA组合算法优化PID参数及可视化平台设计 被引量:1

PID Parameters of PSO-GA Combination Algorithm Optimization and Design of Visual Platform
下载PDF
导出
摘要 PID控制是机床伺服控制系统中广泛应用的一种控制方式,PID参数是否合理直接影响着伺服系统的性能。以MKS8332A数控凸轮轴磨床砂轮架伺服系统为模型,提出一种基于粒子群-遗传组合算法(PSO-GA)的PID控制器参数优化方法。仿真结果表明,该算法寻优性能比单独的遗传算法和粒子群算法表现更为优异,证实了该算法能有效的优化伺服系统PID参数。为了使用户无需去了解复杂的算法源代码,而只需在平台上进行操作就可以解决PID参数的优化问题。多种智能算法被引入称为可视化平台的优化软件设计,用MATLAB GUI编程环境构建了PID参数可视化平台,为用户提供一个友好的图形界面。 PID control is widely used in machine tool servo control system.Whether the parameters are reasonable or not is very important to affect the performance of the servo control system.MKS8332A CNC camshaft grinding wheel servo system is seen as a model,PID controller parameters optimization method based on PSO-GA combination algorithm is proposed.The simulation results in PID controller parameters optimization show that the algorithm is superior to the single GA or PSO algorithm,which confirmed that the algorithm can effectively optimize the PID controller parameters of the servo system.In order not to make users need to understand the complex source code of the algorithms,optimization problem of PID parameters can be solved just to execute operations on the platform.Some intelligent algorithms are introduced to the optimization software,called visual platform,using MATLAB GUI programming environment to construct PID parameters visual platform,which provide a friendly graphical interface for users.
机构地区 北京工业大学
出处 《机械设计与制造》 北大核心 2013年第8期8-11,共4页 Machinery Design & Manufacture
基金 国家自然科学基金资助项目(50775004) 北京市教委基金资助项目(05001011200702)
关键词 粒子群-遗传组合算法 PID控制器参数优化 砂轮架伺服系统 可视化仿真平台 PSO-GA Combination Algorithm PID Controller Parameters Optimization Servo System of Grinding Carriage Visual Simulation Platform
  • 相关文献

参考文献7

  • 1Ntogramatzidis L, Ferrante A. Exact tuning of PID controllers in controlfeedback design [J]. IET control theory and applications,2011,5(4):565-578.
  • 2冯士刚,艾芊.基于伪并行NSGA-Ⅱ算法的多目标鲁棒PID优化设计[J].仪器仪表学报,2008,29(4):874-878. 被引量:5
  • 3方红庆.一种改进粒子群算法及其在水轮机控制器PID参数优化中的应用[J].南京理工大学学报,2008,32(3):274-278. 被引量:11
  • 4M.Senthil A, M.V.C.Hao, Aarthi C. A new and improved version ofparticle swarm optimization algorithm with global-local best parameters[J]. Knowledge and Information Systems, 2008,16(3) :331-357.
  • 5Birge B. A particle swarm optimization toolbox for use with MATLAB[C].In: Swarm Intelligence Symposium,2003 : 182-186.
  • 6Collins T D. Applying softwarevisualization technology to support the useof evolutionary algorithms [J]. Journal of Visual Language and Computing,2003(14):123-150.
  • 7张火明,孙小丽,高明正.智能优化平台设计[J].仪器仪表学报,2009,30(6):353-355.

二级参考文献15

共引文献14

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部