期刊文献+

AX=B的行(反)对称与列(反)对称解 被引量:1

On the Solutions to Row (Skew) Symmetric and Column (Skew) Symmetric for AX = B
下载PDF
导出
摘要 给出了行(反)对称矩阵与列(反)对称矩阵的一个等价刻画,讨论了矩阵方程AX=B具有行(反)对称与列(反)对称解的充分必要条件,并给出了一般解。 The equivalent propositions of row (skew) symmetric matrix and column (skew) symmetric matrix are given in this paper. Meanwhile, it is discussed that the matrix equation has the necessary and sufficient condition for solutions to row (skew) symmetric and column (skew) symmetric. And the general solution is presented.
作者 刘桂香
机构地区 扬州职业大学
出处 《扬州职业大学学报》 2013年第2期25-28,35,共5页 Journal of Yangzhou Polytechnic College
关键词 行(反)对称矩阵 列(反)对称矩阵 充要条件 row (skew) symmetric matrix column (skew) symmetric matrix sufficient and necessary condition solution
  • 相关文献

参考文献6

二级参考文献28

共引文献85

同被引文献16

  • 1陈龙玄.四元数矩阵的特征值和特征向量[J].烟台大学学报(自然科学与工程版),1993,6(3):1-8. 被引量:11
  • 2Khatri C G, Mitra S K. Herrnitian and nonnegative definite solutions of linear matrix equations[J]. J. SI- AM J. Appl. Math. , 1976, 31. 579-585.
  • 3Wang Qingwen, Yu Juan. On the generalized bi (skew-) symmetric solutions of a linear matrix equa- tion and its procrust problems[J]. J. Applied Mathe- matics and Computation, 2013, 219: 9872-9884.
  • 4Wang Qingwen. Bisynmetric and centrosymmetric so lutions to systems of real quaternion matrix equations [J]. J. Comput. Math. Appl., 2005, 49: 641-650.
  • 5Li Y T, Wu W J. Symmetric and skew-antisymmetrie solutions to systems of real quaternion matrix equa- tions[J]. J. Comput. Math. Appl., 2008, 55(6): 1142-1147.
  • 6Zhang Qin, Wang Qingwen. The (P,Q) (skew)sym- metric extremal rank solutions to a system of quaterni- on matrix equations[J]. J. Applied Mathematics and Computation, 2011, 217:9286 9296.
  • 7Zhang Fuzhen. Quaternions and matrices of quaterni ons[J]. Linear Algebra Appl. , 1997, 251:21 -57.
  • 8Farid F O, Wang Qingwen, Zhang Fuzhen. On the eigenvahes of quaternion matrices [J]. Linear and Multilinear Algebra, 2011, 59(4): 451 -473.
  • 9Huang Liping, Wasin So. On left eigenvalues of a quaternionic matrix. Linear Algebra and its Applica- tions[J], 2001, 323:105- 116.
  • 10Andrew B. Right eigenvalues for quaternionic matri- ces: a topological approach[J]. Linear Algebra and its Applications, 1999, 286: 303-309.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部