期刊文献+

基于视觉复杂度的自适应尺度遥感影像分割 被引量:6

An Adaptive Scale Segmentation for Remote Sensing Image Based-on Visual Complexity
下载PDF
导出
摘要 遥感影像中的对象尺度差异巨大,任何单一尺度的分割很难产生令人满意的结果。该文认为可以根据场景的视觉复杂程度选择合适的分割尺度,并据此提出一种自适应尺度的分割算法。根据Watson视觉模型计算场景复杂度,用以调节统计区域合并(SRM)算法的分割尺度。此外,该文还将SRM改进为动态合并方式,并扩展到多波段的遥感影像。实验结果表明,该文提出的自适应尺度分割算法,比单一尺度下的分割精度更高。 In remote sensing image, there is significant difference between the scales of different objects, so any single-scale segmentation can barely produce satisfying result. This paper argues that appropriate segmentation scale can be selected according to the visual complexity of scene. Based on the Watson visual model, a method is proposed to calculate the complexity used for adapting the scale of the Statistical Region Merging (SRM). In addition, the SRM is improved with dynamic merging mode and extended to multi-band image. The experiments demonstrate that the performance of the proposed adaptive scale segmentation is better than any single-scale segmentation
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第8期1786-1792,共7页 Journal of Electronics & Information Technology
关键词 图像处理 自适应尺度分割 统计区域合并 多尺度分割 遥感影像 区域生长 Image processing Adaptive scale segmentation Statistical Region Merging (SRM) Multi-scalesegmentation Remote sensing image Region growing
  • 相关文献

参考文献19

  • 1Shi Jian-bo and Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
  • 2Felzenszwalb Pedro F and Huttenlocher D P. Efficient graph-based image segmentation[JI. International Journal of Computer Vision, 2004, 59(2): 167 181.
  • 3Wang Song and Siskind J M. Image segmentation with ratio cut [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 675-690.
  • 4Comaniciu D and Meer P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 5Vincent L and Pierre S. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598.
  • 6Baatz M and Schape A. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation[OL]. 2000, URL: http://www.agit.at/papers /2000/baatz FP 12.pdf.
  • 7Benz Ursula C, Peter Hofmann, Gregor Willhauck, et al.. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3/4): 239-258.
  • 8Nielsen F. On region merging: the statistical soundness of fast sorting, with applications[C]. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison. 2003: II19-II26.
  • 9Nock R and Nielsen F. Statistical region merging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1452-1458.
  • 10Zhang Peng, Ming Li, Yan Wu, et al.. SAR image multiclass segmentation using a multiscale TMF model in wavelet domain[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1099-1103.

同被引文献56

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2Liu D, Liang J L. A Bayesian Approach to Diameter Estimation in the Diameter Control System of Silicon Single Crystal Growth. IEEE Trans on Instrumentation and Measurement, 2011, 60(4) : 1307- 1315.
  • 3Huang Z K, Chau K W. A New Image Thresholding Method Based on Gaussian Mixture Model. Applied Mathematics and Computation, 2008, 205 (2) : 899-907.
  • 4Huang D Y, Wang C H. Optimal Multi-level Thresholding Using a Two-Stage Otsu Optimization Approach. Pattern Recognition Letters, 2009, 30(3): 275-284.
  • 5Hammouche K, Diar M, Siarry P. A Multilevel Automatic Thre- sholding Method Based on a Genetic Algorithm for a Fast Image Segmentation. Computer Vision and Image Understanding, 2008, 109(2) : 163-175.
  • 6Kato Z. Segmentation of Color Images via Reversible Jump MCMC Sampling. Image and Vision Computing, 2008, 26(3 ) : 361-371.
  • 7Akay B. A Study on Particle Swarm Optimization and Artificial Bee Colony Algorithms for Multilevel Thresholding. Applied Soft Com- puting, 2013, 13(6) : 3066-3091.
  • 8Horng M H. Multilevel Thresholding Selection Based on the Artifi- cial Bee Colony Algorithm for Image Segmentation. Expert Systems with Applications, 2011, 38( 11 ) : 13785-13791.
  • 9Dirami A, Hammouche K, Diaf M, et al. Fast Multilevel Thre- sholding for Image Segmentation through a Multiphase Level Set Method. Signal Processing, 2013, 93 ( 1 ) : 139-153.
  • 10Li Y, Li J, Chapman M A. Segmentation of SAR Intensity Imagery with a Vorenoi Tessellation, Bayesian Inference, and Reversible Jump MCMC Algorithm. IEEE Trans on Geoseience and Remote Sensing, 2010, 48(4) : 1872-1881.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部