期刊文献+

Markov隐写检测特征的一种新设计 被引量:4

New Design of Markov Steganalytic Features
下载PDF
导出
摘要 如何在保持Markov特征隐写检测能力的同时降低其维数是隐写分析领域中一个重要问题。该文通过将空域图像各向同性的统计假设扩展到离散余弦变换(DCT)域,给出了一种新的特征设计方法。该方法可将传统的块内特征的维数降低36%,块间特征的维数降低72%,且广泛地适用于不同提取源不同阶数的Markov特征。实验表明,该文的设计方法降低维数的同时还提高了特征的检测性能。 How to reduce Markov features’ dimensionality while keeping their steganalytic ability is an important issue in the field of steganalysis.This paper generalizes the statistical hypothesis that images are isotropic from spatial domain to Discrete Cosine Transform(DCT) domain,and provides a new design method.The proposed method is suitable for Markov features of different orders with respect to different sources of extraction and it can effectively deduce the dimensionality of Markov features.Concretely,it can reduce the dimensionality of traditional intrablock features by 36% and that of interblock features by 72%.Experimental results show that the proposed method can also enhance the features’ detection ability.
作者 张昊 平西建
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第8期1907-1913,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60970142)资助课题
关键词 隐写分析 Markov特征 降维 联合图像专家组(JPEG) Steganalysis Markov features Dimensionality reduction Joint Photographic Experts Group(JPEG)
  • 引文网络
  • 相关文献

参考文献23

  • 1Li B, He J, Huang J, et al.. A survey on image steganography and steganalysis[J]. Journal of Information Hiding and Multimedia Signal Processing, 2011, 2(2): 142-172.
  • 2Kodovsk: J, Fridrich J, and Holub V. Ensemble classifiers for steganalysis of digital media[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2): 432 444.
  • 3Kodovsk: J using rich and Fridrich models[C]. Watermarking, Security 1-13. J. Steganalysis of JPEG images Proceedings of SPIE Media and Forensics, Burlingame, 2012:.
  • 4Shi Y Q, Chen C, and Chen W. A Markov process based approach to effective attacking JPEG steganography[C]. Proceedings of Information Hiding Workshop, Alexandria, 2006: 249-264.
  • 5Pevn: T and Fridrich J. Merging Markov and DCT features for multi-class JPEG steganalysis[C]. Proceedings of SPIE Security, Steganography, and Watermarking of Multimedia, San Jose, 2007: 1-14.
  • 6Chen C and Shi Y Q. JPEG image steganalysis utilizing both intrablock and interblock correlations[C]. IEEE International Symposium on Circuits and Systems, Washington, 2008: 3029-3032.
  • 7Davidson J and Jalan J. Steganalysis using partially ordered Markov models[C]. Proceedings of Information Hiding Workshop, Calgary, 2010: 118-132.
  • 8Liu Q, Sung A H, and Qiao M. Neighboring joint density- based JPEG steganalysis[J]. A CM Transactions on Intelligent Systems and Technology, 2011, 2(2): 1-16.
  • 9Pevn: T, Bas P, and Fridrich J. Steganalysis by subtractive pixel adjacency matrix[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 215-224.
  • 10Liu Q, Sung A H, Qiao M, et al.. An improved approach to steganalysis of JPEG images[J]. Information Sciences, 2010, 180: 1643-1655.

同被引文献31

  • 1Lou D C, Hu C H. LSB steganographic method based on reversible histogram transformation function for resisting statistical steganalysis[J]. Information Sciences, 2012,188(2) : 346-358.
  • 2Ker A D,Bas P, Bohme R, et al. Moving steganography and steganalysis from the laboratory into the real world[C] // Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security. Portland:ACM,201345-58.
  • 3Fridrieh J,Kodovsky J. Steganalysis of LSB replacement using parity-aware features[C] // Information Hiding. Heidelberg, Berlin : Springer, 2013 : 31-45.
  • 4Ker A D,Lubenko I. Feature reduction and payload location with WAM steganalysis[C] // IST / SPIE Electronic Imaging. San Diego: International Society for Optics and Photonies, 2009 : 72540A-72540A-13.
  • 5Pevny T,Bas P,Fridrich ]. Steganalysis by subtraetive pixel adjacency matrix[J]. Information Forensics and Security, IEEE Transactions on,2010,5(2) :215-224.
  • 6万宝吉,张涛,李文祥,等.基于多分类器融合的未知崩人率图像隐写仆糈肯洪[J].斯抿票售与钋硼.2014.29(5).740-756.
  • 7Holub V,Fridrich J,Denemark T. Random projections of residuals as an alternative to co-occurrences in steganmyslLtJ // IST / SHE Electronic Imaging. San Diego:International Society for Optics and Photonies,2013:11. Lubenko I,Ker A D. Steganalysis using logistic regression[C]//IST / SHE Electronic Imaging. San Diego:International Society for Optics and Photonics,2011:ll.
  • 8Zhu J, Hastie T. Kernel logistic regression and the import vector machine[J]. Journal of Computational and Graphical Statistics, 2005,14(1) : 171-180.
  • 9Komarek P,Moore A W. Making logistic regression a core data mining tool with TR-IRLS[C] // Fifth IEEE International Conference on Data Mining. Piscataway : IEEE, 2005 : 4.
  • 10Dembo R S, Steihaug T. Truncated-newtono algorithms for large-scale unconstrained optimization [J]. Mathematical Programming, 1983,26(2) 190-212.

引证文献4

二级引证文献4

;
使用帮助 返回顶部