期刊文献+

冻融后预应力混凝土梁受力全过程试验研究 被引量:18

Experimental study on mechanical behaviors of prestressed concrete beams subjected to freeze-thaw cycles
下载PDF
导出
摘要 采用预应力混凝土梁构件,通过快速冻融试验方法,对经受冻融损伤的预应力混凝土梁的受弯全过程进行试验研究。分析冻融循环次数对于预应力混凝土梁受弯性能的影响,包括开裂荷载、极限承载力及抗弯刚度。构件经历的冻融循环次数为0、75、100、125。结果表明:冻融后的预应力混凝土梁在荷载作用下仍能较好地符合平截面假定,其开裂荷载随着冻融循环次数的增加呈直线下降。预应力混凝土梁的极限承载力随着冻融循环次数的增加呈加速下降。冻融循环对于开裂前的抗弯刚度影响较小;构件开裂后,冻融次数越多刚度下降越大;冻融后的构件破坏时延性较差。此外,根据冻融后混凝土材料受压应力-应变曲线的变化特点,从等效应力图形出发,给出冻融后预应力混凝土梁极限承载力的计算方法。 The static loading experiments of prestressed concrete beams subjected to quick freeze-thaw cycles were carried out. Freeze-thaw effects on flexural behaviors, such as cracking moment, ultimate moment and flexural rigidity, were analyzed. The specimens experienced 0, 75, 100 and 125 freeze-thaw cycles before mechanical tests. Experimental results show: after the freeze-thaw cycles the plane-section assumption still can be applied to the specimens very well, and the cracking moment decreases linearly with the increment of freeze-thaw cycles. The ultimate moment drops non- linearly with the increase of freeze-thaw cycles. Before cracking, freeze-thaw damage has little effect on the flexural rigidity of beams, after cracking of the beam, however, the flexural rigidity decreases with freeze-thaw cycles. The ductility of beam experienced freeze-thaw cycles will be weakened. In addition, based on the varying characteristics of compressive stress-strain curve for concrete experienced freeze-thaw cycles and the figure of equivalent stress, the computational method of ultimate moment is achieved.
机构地区 扬州大学 东南大学
出处 《土木工程学报》 EI CSCD 北大核心 2013年第8期38-44,共7页 China Civil Engineering Journal
基金 国家自然科学基金面上项目(50978224)
关键词 预应力混凝土梁 冻融循环 试验 计算方法 prestressed concrete beam freeze-thaw cycles experiment computational method
  • 相关文献

参考文献17

  • 1Fagerlund G. Modeling the service life of concrete exposed to frost [ C ]//International Conference on Ion and Mass Transport in Cement-Based Materials. Canada, 1999: 195-204.
  • 2Pigeon M , Pleau R. Durability of concrete in cold climates [ M1. London: Taylor & Francis, 1995.
  • 3Cho T. Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method [ J ]. Construction and Building Materials, 2007, 21 (12): 2031-2040.
  • 4Ueda T, Hasan M, Nagai K, et al. Mesoscale simulation of influence of frost damage on mechanical properties of concrete[ J]. Journal of Materials in Civil Engineering, 2009,21 (6) :244-252.
  • 5商怀帅,宋玉普,覃丽坤.普通混凝土冻融循环后性能的试验研究[J].混凝土与水泥制品,2005(2):9-11. 被引量:88
  • 6商怀帅,尹全贤,宋玉普,覃丽坤.冻融循环后普通混凝土变形特性的试验研究[J].人民长江,2006,37(4):58-61. 被引量:7
  • 7Shang H S, Song Y P. Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles [ J ]. Cement and Concrete Research, 2006,36(10) : 1857-1864.
  • 8Shang H, Song Y, Qin L. Experimental study on strength and deformation of plain concrete under triaxial compression after freeze-thaw cycles [ J ]. Building and Environment, 2008,43 ( 7 ) : 1197-1204.
  • 9Duan A, Jin W, Qian J. Effect of freeze-thaw cycles on the stress-strain curves of unconfined and confined concrete [ J ]. Materials and Structures, 2011,44 (7) : 1309-1324.
  • 10Hasan M, Ueda T, Sato Y. Stress-strain relationship of frost-damaged concrete subjected to fatigue loading [ J 1. Journal of Materials in Civil Engineering, 2008,20 ( 1 ) : 37-45.

二级参考文献11

共引文献446

同被引文献213

引证文献18

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部