期刊文献+

Contourlet四叉树系数方向相关性的遥感图像融合算法 被引量:7

Research of Remote Sensing Image Fusion Method Based on the Contourlet Coefficients' Correlativity
下载PDF
导出
摘要 近年来,遥感图像融合技术作为遥感图像处理的重要分支,在资源调查、环境监测和区域分析等领域受到广泛关注.遥感图像融合技术可以融合不同传感器获得的不同图像,获得一幅信息完整、表达准确的融合图像.Contourlet变换以其优越的非线性逼近特性和良好的多分辨率、各向异性、冗余性等特点成为处理二维及多维信号奇异性的有利工具,并广泛应用到图像融合领域.结合Contourlet变换的特征,深入分析了Contourlet系数的关联特征,提出了一种基于Contourlet四叉树系数方向相关性的遥感图像融合方法.首先对不同传感器所采集的遥感图像进行Contourlet变换,获得不同尺度下的系数分布;然后根据各尺度之间的系数满足四叉树结构关系、树中各结点的方向相关性表现出一致的特征,提出了一种新的系数相关性融合规则,能够自适应地计算融合加权系数,进而获取融合系数;最后对融合系数进行Contourlet逆变换,得到遥感融合图像.相比于传统遥感图像融合方法,新算法获得的图像信息量更加丰富,纹理更加清晰,具有较强的实用性. In recent years, as an important branch of remote sensing image processing technology, remote sensing image fusion technologies have been widely applied, especially in the fields of resource exploration, environmental monitoring, region analysis and so on. The techniques can fuse different images from different sensors to an image which has complete information and accurate expression. Contourlet transform is comprehensively concerned in the discipline of remote sensing image processing for its excellent characteristics such as non-linear approximation, multi-resolution, time- frequency localization, multi-directional and anisotropy. In this paper, combining the directional characteristics of Contourlet transform, we analyze the correlativity attribute and propose a novel image fusion algorithm for remote sensing images based on Contourlet coefficients' correlativity. Firstly, we separately perform Contourlet transform on the intensity component of multi-spectral remote sensing image obtained by IHS transform, and panchromatic remote sensing image. Secondly, we propose the fusion priciple of self-adaption calculating fuesd weighting coefficients. Finally, the target image is obtained by reverse Contourlet transform and reverse IHS transform. Compared with the traditional fusion methods, our algorithm can enhance the spatial resolution of target image. Meanwhile, it preserves the spectral information of multi-spectral image well.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第8期1778-1786,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(41271422) 辽宁省自然科学基金项目(20102123) 计算机软件新技术国家重点实验室开放基金项目(KFKT2011B11 KFKT2011B09) 南京邮电大学图像处理与图像通信江苏省重点实验室开放基金项目(LBEK2010003 LBEK2011001) 智能计算与信息处理教育部重点实验室(湘潭大学)开放课题(2011ICIP06)
关键词 遥感图像 融合 CONTOURLET变换 方向相关性 四叉树 remote sensing image fusion Contourlet transform correlativity of directional region quad-tree
  • 相关文献

参考文献15

  • 1Zhou Xiuling , Song Mengxin. Guo Ping. et al. Remote sensing image fusion based on multi-objective evolutionary algorithm [C]// Proc of IEEE Int Conf on Systems Man and Cybernetics. Piscataway. NJ: IEEE. 2010: 3791-3795.
  • 2Waria C A. Saleta L. Catalan R C. et al. Fusion of multispectral and panchromatic image using improved IHS and PCA mergers based on wavelet decomposition [J]. IEEE Trans on Geoscience and Remote Sensing. 2004. 42 ( 6 ) : 1291-1299.
  • 3董广军,张永生,范永弘.PHI高光谱数据和高空间分辨率遥感图像融合技术研究[J].红外与毫米波学报,2006,25(2):123-126. 被引量:23
  • 4Choi M. A new intensity-hue-saturation image fusion approach to image fusion with a trade off parameter [J]. IEEE Trans on Geoscience and Remote Sensing. 2006. 44 (6): 1672-682.
  • 5XU Lijun , Zhang Iianqiu , Yan Yong. A wavelet-based multi?sensor data fusion algorithm [J]. IEEE Trans on Instrumentation and Measurement. 2004. 53(6): 1539-1545.
  • 6Chen Tao. Zhang j unping , Zhang Yeo Remote sensing image fusion based on ridgelet transform [C]// Proc of IEEE Int on Geoscience and Remote Sensing Symposium. Piscataway. NJ: IEEE. 2005: 1150-1153.
  • 7李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89
  • 8Do M N. Vetterli M. The Contourlet transform: An efficient directional multiresolution image representation [J]. IEEE Trans on Image Processing. 2005. 14(2): 2091-2106.
  • 9Po D D Y. Do M N. Directional multiscale modeling of images using the contourlet transform [J]. IEEE Trans on Image Processing. 2006. 15(6): 1610-1620.
  • 10王娜,纪震,贾传荧,李霞.基于内存优化和启发式深度优先搜索的小波零树图像编码算法[J].电子学报,2005,33(3):440-443. 被引量:6

二级参考文献66

共引文献180

同被引文献60

  • 1鲍复民,李爱国,覃征.基于SGNN的图像融合[J].计算机研究与发展,2005,42(3):417-423. 被引量:2
  • 2陈涛,易沫,刘忠轩,彭思龙.相似尺度图像融合算法[J].计算机研究与发展,2005,42(12):2126-2131. 被引量:1
  • 3苗启广,王宝树.一种自适应PCNN多聚焦图像融合新方法[J].电子与信息学报,2006,28(3):466-470. 被引量:36
  • 4杜培军,谭琨,夏俊士.高光谱遥感影像分类与支持向量机应用研究[M].北京:科学出版社,2012.
  • 5Mahyari A G, Yazdi M. Panchromatic and muhispectral image fusion based on maximization of both spectral and spatial similarities [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49 (6) : 1976 - 1985.
  • 6Heikkinen V,Korpela I,Tokola T,et al. An SVM classification of tree species radiometric signatures based on the Leica ADS40 sensor[ J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49 (11 ) : 4539 -4551.
  • 7VAISHAMPAYANV A, SLOANE N J, SERVETTO S D. Multiple description vector quantization with lattice codebooks:design and analysis[J]. IEEE Trans Inf Theory, 2001,47 : 1718-1734.
  • 8HUIHUI B, ZHU C, ZHAO Y. Optimized multiple description lattice vector quantization for wavelet image coding[-JJ. IEEE Trans Circuits Syst Video Technol, 2007,17(7) : 912-917.
  • 9AKHTARKAVANE, FADZLI M,SALLEH M. Multiple description coinciding vector quantizer for wavelet image coding[J]. IEEE Transactions on Image Processing,2012,1(2):653-661.
  • 10SEVETTOS D, VAISHAMPAYAN V A,SLOANE J A. Multiple description lattice vector quantizationEC://Proc IEEE: Data Compression of Elect rical and Electronic Engineering, Conf, Snowbird, UT, Mar. 1999 : 13-22.

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部