摘要
语义的形式化是自然语言语义计算的必要条件,其基础是戴维森真值条件语义学和蒙太格的模型论语义学。戴维森的目标是用真值条件来构建自然语言的语义理论,这种理论曾受到过很多质疑,但是在蒙太格语法那里,戴维森的设想得以部分地实现。蒙太格语法将自然语言的语义表征为模型论语义解释,由于后者具有可判定性,也就使得自然语言的逻辑语义关系具有了可计算性。
Semantic Formalization of natural language (NL) which is a necessary step for the semantic computation of NL is based on Davidson's truth-conditional semantics and Montague's model-theoretic se- mantics. Davidson's aim is to construct a semantic theory for NL by means of truth conditions, which used to be doubted by many scholars. However, Davidsonian Program is partially realized in Montague Grammar with which the semantics of NL is represented as its model-theoretic interpretations. Since the model- theoretic interpretations are decidable, it is possible to compute the logic relations between the different sentences of NL.
出处
《中国社会科学院研究生院学报》
CSSCI
北大核心
2013年第4期110-113,共4页
Journal of Graduate School of Chinese Academy of Social Sciences
基金
邹崇理主持的国家社科基金重大招标课题“自然语言信息处理的逻辑语义学研究”(10&ZD073)
李可胜主持的教育部人文社会科学研究青年基金项目“基于事件特征的连动式语义组合机制研究”(10YJC740058)的阶段性成果
关键词
形式语义
戴维森纲领
蒙太格语法
真值条件
formal semantics
Davidsonian Program
Montague Grammar
truth conditions