期刊文献+

非线性反应扩散方程组的符号不变量和变量分离解

Sign-invariant and Separation of Variables Solutions of the System of Nonlinear Reaction-diffusion Equations
原文传递
导出
摘要 主要利用Galaktionov提出的符号不变量的方法来研究非线性反应扩散方程组的精确解,首先引入Hamilton-Jacobi算子作为方程组的符号不变量,通过对称约化找到方程组容许的超定方程组系统并对其求解,进而得到了允许符号不变量的方程组的具体形式、约束条件和其变量分离解,最后给出某些例子. This paper is devoted to the quasilinear partial differential equations by study on the exact solutions for the systems of the method of the sign-invariant theory, which is introduced by Galaktionov. We Introduce the Hamilton-Jacobi operator as the sign-invariant of the nonlinear reaction-diffusion systems. As a conseqhence, we present overdetermined nonlinear system by symmetry reduction. Finally we obtain some explicit solutions of the corresponding systems and give some examples.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第15期283-287,共5页 Mathematics in Practice and Theory
基金 河南省自然科学基金项目(102300410275 122300410166) 河南省教育厅项目(13A110119)
关键词 非线性反应扩散方程组 符号不变量 精确解 the system of nonlinear reaction-diffusion equations sign-invariant theoryexact solutions
  • 相关文献

参考文献1

二级参考文献38

  • 1P. J. Olver, Application of Lie Groups to Differential Equations, Springer, New York (1993).
  • 2W.F. Ames, Nonlinear Partial Differential Equations in the Engineering, Academic, New York (1972).
  • 3G.W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer, New York (1989).
  • 4G.W. Bluman and J.D. Cole, J. Math. Mech. 18 (1969) 1025.
  • 5P.A. Clarkson and E. L. Mansfield, Physica D 70 (1993) 250.
  • 6P.G. Estevez, J. Phys. A: Math. Gen. 27 (1994) 2113.
  • 7M.C. Nucci and P. A. Clarkson, Phys. Lett. A 164 (1992) 4.
  • 8M.C. Nucci, J. Math. Anal. Appl. 178 (1993) 294.
  • 9R. Z. Zhdanov, J. Phys. A: Math. Gen. 27 (1994) L291.
  • 10R.Z. Zhdanov, J. Math. Phys. 38 (1997) 1197.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部