摘要
主要利用Galaktionov提出的符号不变量的方法来研究非线性反应扩散方程组的精确解,首先引入Hamilton-Jacobi算子作为方程组的符号不变量,通过对称约化找到方程组容许的超定方程组系统并对其求解,进而得到了允许符号不变量的方程组的具体形式、约束条件和其变量分离解,最后给出某些例子.
This paper is devoted to the quasilinear partial differential equations by study on the exact solutions for the systems of the method of the sign-invariant theory, which is introduced by Galaktionov. We Introduce the Hamilton-Jacobi operator as the sign-invariant of the nonlinear reaction-diffusion systems. As a conseqhence, we present overdetermined nonlinear system by symmetry reduction. Finally we obtain some explicit solutions of the corresponding systems and give some examples.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第15期283-287,共5页
Mathematics in Practice and Theory
基金
河南省自然科学基金项目(102300410275
122300410166)
河南省教育厅项目(13A110119)
关键词
非线性反应扩散方程组
符号不变量
精确解
the system of nonlinear reaction-diffusion equations
sign-invariant theoryexact solutions