期刊文献+

基于显式边界水平集方法流道优化设计 被引量:1

An Explicit Boundary Level Set Method for Optimization Design of Fluid Channel
下载PDF
导出
摘要 为了解决流道优化设计中的流量分配问题,基于COMSOL Multiphysics软件进行二次开发,采用显式边界水平集方法和真实无滑移边界条件,数值求解不可压缩Navier-Stokes方程,提出了基于水平集边界显式化方法的适合管道流量分配的优化模型,并验证了优化模型的数值敏度,通过算例证明了基于显式边界水平集方法建立的优化模型能够有效地解决流道优化设计中流量分配的问题,并且在优化的过程中保留了水平集方法进行拓扑变化的特性。 This paper focused on solving mass distribution problem of fluid channel design with COMSOL script,based on explicit boundary level set method(EbLSM) for incompressible Navier-Stokes flow. The physical field was solved by using explicit no-slip boundary conditions. A method to construct explicit boundaries and optimization model for mass distribution problem was discussed, and the model's sensitivity was verified numerically. Finally, the numerical examples illustrate that, based on the EbLSM, the proposed numerical model can solve mass distribution efficiently problem. At the same time, in the progress of optimization, the EbLSM possesses the capability to modify channel' s topology.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2013年第15期2097-2100,2113,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(509775272)
关键词 流道 显式边界 水平集方法 优化设计 fluid channel explicit boundary level set method optimization design
  • 相关文献

参考文献12

  • 1Guest J K, Prevost J H. Topology Optimization of Creeping Fluid Flows Using a Darcy-stokes Finite Element[J]. International Journal for Numerical Methods in Engineering, 2006,66 : 461-484.
  • 2詹阳烈,庄春刚,熊振华,丁汉.基于水平集方法与FreeFEM的弹性结构拓扑优化[J].中国机械工程,2009(11):1326-1331. 被引量:3
  • 3Osher S, Sethian J. Front Propagating with Curvature Dependent Speed:Algorithms Based on Hamilton-jacobi Formulations[J]. Journal of Computational Physics, 1988,79(1): 12-49.
  • 4Sussman M. Smereka P, Osher S. A Level Set Approach for Computing Solutions to Incompressible 2 -phase Flow[J]. Journal of Computational Physics, 1994,114 : 146-159.
  • 5Deng Y B,Liu Z Y,Wu Y H,el al. Topology Optimization of Unsteady Incompressible Navier- stokes Flows[J]. Journal of Computational Physics, 2010,230(17) :6688-6708.
  • 6Liu Z Y,Korvink J G, Huang R Y. Structure Topology Optimization: Fully Coupled Level Set Method via FEMLAB[J]. Structural and Multidisciplinary Optimization, 2005,29:407-417.
  • 7Mei Yulin,Wang Xiaoming Department of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China.LEVEL SET METHOD FOR TOPOLOGICAL OPTIMIZATION APPLYING TO STRUCTURE, MECHANISM AND MATERIAL DESIGNS[J].Chinese Journal of Mechanical Engineering,2004,17(2):200-209. 被引量:3
  • 8Wang M Y,Chen S K,Wang X M. Design of Multi- material Compliant Mechanisms Using Level-set Methods[J]. Journal of Mechanical Design, 2005, 127(5) :941-956.
  • 9Liu Z Y,Gao Q Y,Zhang P,et al. Topology Optimization of Fluid Channels with Flow Rate Equality Constraints [J].Structural and Multidisciplinary Optimization, 2011, 44 ( 1 ) : 31-37.
  • 10Papadimitriou D I,Giannakoglou K C. Aerodynamic Shape Optimization Using First and Second Or- der Adjoint and Direct Approaches [J]. Arch. Comput. Methods Eng. ,2008,15..447-488.

二级参考文献17

  • 1郭旭,赵康.基于拓扑描述函数的连续体结构拓扑优化方法[J].力学学报,2004,36(5):520-526. 被引量:35
  • 2荣见华,罗银燕.基于水平集演化的结构拓扑优化解分析[J].长沙理工大学学报(自然科学版),2006,3(2):38-43. 被引量:2
  • 3Sethian J A, Wiegmann A. Structural Boundary Design via Level Set and Immersed Interface Methods[J]. Journal of Computational Physics, 2000, 163(2) : 489-528.
  • 4Wang M Y, Wang X,Guo D. A Level Set Method for Structural Topology Optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1/2) : 227-246.
  • 5Allaire G, Jouve F,Toader A. Structural Optimization Using Sensitivity Analysis and a Level-set Method [J]. Journal of Computational Physics, 2004, 194(1): 363-393.
  • 6Liu Z, Korvink J G, Huang R. Structure Topology Optimization: Fully Coupled Level Set Method via FEMLAB[J]. Structural and Multidisciplinary Optimization, 2005, 29(6): 407-417.
  • 7Allaire G, Pantz O. Structural Optimization with FreeFem++ [J]. Structural and Multidisciplinary Optimization, 2006, 32(3): 173-181.
  • 8Allaire G. A FreeFem ++ Toolbox for Shape Opti mization(Geometry and Topology)[EB/OL]. [2008 01-15]. http://www. cmap. polytechnique. fr/-allaire/freefem_en. html.
  • 9Osher S, Sethian J. Front Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations[J].Journal of Computational Physics, 1988, 79(1): 12-49.
  • 10Sethian J A. Level Set Methods and Fast Marching Methods[M]. Cambridge, MA: Cambridge University Press, 1999.

共引文献4

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部