期刊文献+

动力电池化成工艺的节能型自动充放电系统设计 被引量:1

Design of An Energy-saving and Automatic Charging & Discharging System for Formation Process of Power Batteries
下载PDF
导出
摘要 针对传统的电阻放电式动力电池化成方法,设计了一种基于电池对充化成的节能型自动充放电系统。该系统以dsPIC5015单片机为控制核心,构建了1个较智能的软硬件平台,通过Boost升压整流电路,将需要放电的电池进行升压整流,再向需要充电的电池充电,从而充分利用电池放电的电能。实验证明该系统的能量利用率可达到72%以上,相对于电阻放电模式有效地降低了电能损耗,同时实现了系统工作自动化,极大地减轻了操作人员的工作压力,具有很好的应用前景。 Different from the traditional way of using resistors to format batteries, an energy-saving and automatic charging and discharging system is designedon basis of formatting each other. With a dsPICS015 microcontroller as the control kernel, the system builds an intelligent hardware and software platform. It uses a boost circuit to charge the battery from another that needs to be discharged, which make a full use of the electrical energy. The experiments prove that the energy utilization of the system can reach more than 72%. Compared with the resistance-discharging mode, this system can reduce power consumption effectively and realize automation of the work to drop working pressure of operators, so it has a wide foreground of application.
出处 《机电一体化》 2013年第5期56-61,共6页 Mechatronics
基金 国家自然科学基金资助项目(61075086 61105101) 机械系统与振动国家重点实验室自主课题资助项目(MSVMS-2010-03) 机器人技术与系统国家重点实验室开放研究项目(SKLRS-2010-ZD-06)
关键词 电池化成 节能 自动充放电 升压电路 battery formation energy-saving automatic charging and discharging boost circuit
  • 相关文献

参考文献5

二级参考文献12

  • 1Cowan R, Hulten S. Escaping lock-in : The case of the e- lectric vehicle[ J]. Technological Forecasting and Social Change, 1996,53:61-79.
  • 2Midler C, Beaume R. Project-based learning patterns for dominant design renewal:The ease of electric vehicle [ J ]. International Journal of Project Management ,2010, 28 : 142-150.
  • 3Armand M, Tarascon J M. Building better batteries [ J ]. Nature ,2008,451:652-657.
  • 4Bayindir K G, Gozukucuk M A, Teke A. A comprehen- sive overview of hybrid electric vehicle : Powertrain con- figurations, powertrain control techniques and electronic control units [ J ]. Energy Conversion and Management, 2011,52 : 1305-1313.
  • 5Gao X P, Yang H X. Multi-electron reaction materials for high energy density battery [ J ]. Energy & Environmental Science ,2010,3 : 165-240.
  • 6Scrosati B, Garche J. Lithium batteries : Status, prospects and future[ J]. J Power Sources,2010,195:2419-2430.
  • 7Feng X M, Ai X P, Yang H X. A positive-temperature- coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries [ J ]. Electrochem Commun ,2004,6 : 1021-1024.
  • 8Amjad S, Neelakrishnan S, Rudramoorthy R. Review of design considerations and technological challenges for successful development and deployment of plug-in hy- brid electric vehicles [ J ]. Renewable and Sustainable Energy Reviews,2010,14 : 1104-1110.
  • 9SEONG I M.Current status of lithium secondary battery industry in korea[A].中韩锂电池技术交流会论文集[C].天津:中国化学与物理电池行业协会,2006.3-11.
  • 10汪继强.高比能量绿色二次电池与燃料电池的发展现状与趋势简评[A].电池技术与市场报告会论文集[C].天津:中国化学与物理电池行业协会,2005.1-8.

共引文献32

同被引文献11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部