期刊文献+

基于模糊遗传算法的配电网无功补偿 被引量:1

The Compensation of Distribution Network Reactive Power Based on Fuzzy Genetic Algorithm
下载PDF
导出
摘要 文中首先介绍了通过模糊理论改进的遗传算法,然后建立了多目标配电网无功优化模型。遗传算法[1]的改进具体在选择操作上考虑了个体在种群中的浓度,在变异操作上加入了防止陷入局部最优的检验操作,有效解决了遗传早熟等缺点。用改进遗传算法求得补偿点的最优配置[2],从而在多种负荷[3]下运行的综合满意度达到最大。并将改进后的算法运用在具体的10 kV某一支路上,取得了非常好的实际应用效果。 This paper first introduces an improved genetic algorithm by fuzzy theory, and then builds a multi- objective dis- tribution network reactive power optimization model. An improved genetic algorithm exactly considers the concentration of individu- al during the choose of the specific operation in the population and adds optimum inspection operation to prevent falling into local in the mutation, effectively soluves the shortcomings of genetic premature. In this paper, using the improved genetic algorithm to ob- tain the optimal allocation of the compensation point, which achieve maximum satisfaction during running in a variety of load. And using the improved algorithm in a branch of 10 kV, makes a very good application effect.
出处 《通信电源技术》 2013年第4期29-31,共3页 Telecom Power Technology
关键词 模糊遗传算法 配电网 多目标 无功优化 fuzzy genetic algorithm distribution network multi-objective reactive power optimization
  • 相关文献

参考文献6

  • 1Deb K, Pratap A, Agrawal S, et al. A fast and elitist multiobjective geneticalgorithm.. NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2) : 182-197.
  • 2侯学勇,丁晓群.基于遗传–模拟退火算法的配电网电容器优化配置[J].电网技术,2005,29(4):81-84. 被引量:28
  • 3陈俊红,黄丽华.基于配电网络规划的优化算法的研究[J].微计算机信息,2006,22(04X):293-295. 被引量:4
  • 4Wennan Lin, Yihua Li, Xingtao Xu, Maojun li. Reactive Power Optimization in Area Power Grid Based on Im- proved Tabu Search Algorithm[C]. DRPT, Nanjing. 2008.
  • 5刘军.配电网智能优化规划平台的算法研究与应用[D].保定:华北电力大学,2010.
  • 6丁晓群,周玲,陈光宇.电网自动电压控制(AVC)技术及案例分析[M].北京:机械工业出版社,2010.

二级参考文献18

共引文献42

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部