期刊文献+

用于三维超宽带乳腺肿瘤成像的最佳天线系统

Optimum Antenna Array System Used for 3D UWB Breast Cancer Imaging
下载PDF
导出
摘要 在超宽带(UWB)乳腺肿瘤检测系统中,采用Debye三维色散模型对乳房建模可以很好地近似人体组织的电导率及介电常数.通过在乳腺模型中分别加入3个不同频带的超宽带天线阵列,带宽涵盖4~12,GHz,采用共焦成像算法和波束形成算法对使用不同天线的色散模型进行成像对比,确定出最优性能的天线.2种成像算法均能准确获得肿瘤位置图像,使用频带为4.0~7.5,GHz的天线对色散模型进行波束形成成像时,成像图分辨率较高,干扰抑制最好,可以清晰地分辨距离肋骨层仅10,mm、直径为5,mm的肿瘤. Three-dimensional Debye dispersion model of ultra-wide bandwidth (UWB)breast cancer detection system can better approximate to the conductivity and permittivity of human tissues. An optimum antenna was determined by applying confocal imaging and beamforming imaging to dispersion model with three antenna arrays of different fre- quency band, whose bandwidths range from 4 GHz to 12 GHz. Both imaging algorithms can achieve the accurate tumor position in images. However, a resultant image of beamforming using an antenna with the bandwidth of 4.0-- 7.5 GHz in dispersion model clearly shows a tumor, resolution ratio and interference rejection. 5 mm in diameter and 10 mm from the rib, with preferable
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2013年第7期579-584,共6页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(61271323) 毫米波国家重点实验室重点开放基金资助项目(K200913)
关键词 超宽带乳腺肿瘤检测 色散模型 天线阵列 共焦成像 波束形成成像 ultra-wide bandwidth (UWB) breast cancer detection dispersion model antenna array confocal imag- ing beamforming imaging
  • 相关文献

参考文献12

  • 1Hagness S C, Taflove A, Bridges J E. Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna- array sensors [J]. 1EEE Transactions of Biomedical Engi- neering, 1998, 45(12): 1470-1473.
  • 2Bond E J, Li Xu, Hagness S C. Microwave imaging via space-time beamforming for early detection of breast cancer [J]. IEEE Transactions of Antennas and Propaga- tion, 2003, 51 (8) : 1698-1703.
  • 3Kubota S, Xiao Xia. Characteristics of UWB bow-tie antenna intrgrated with balun for breast cancer detection [C]//IEEE Antennas' and Propagation Society Sympo- sium. Honolulu, USA, 2007: 769-772.
  • 4Bialkowski M, Ireland D, Wang Yifan. Ultra-wideband array antenna system for breast imaging [C]//Asia- Pacific Microwave Conference. Japan, 2010: 267-270.
  • 5Klemm M, Craddock I J, Leendertz J A. Radar-based breast cancer detection using a hemispherical antenna ar- ray-experimental results[J~. IEEE Transactions of An-tennas and Propagation, 2009, 57(6) : 1692-1702.
  • 6Xiao Xia, Kikkawa Takamaro. Extraction of calibration waveform for confocal microwave imaging forearly breast cancer detection [C]//IEEE International Sympo- sium on Microwave, Antenna, Propagation, andEMC Technologies for Wireless Communications. Hangzhou, China, 2007: 1287-1290.
  • 7O'Halloran M, Jones E, Glavin M. Quasi-multistatic MIST beamforming for the early detection of breast can- cer[J]. IEEE Transactions of Biomedical Engineering, 2010, 57(4): 830-838.
  • 8Gabriel S, Lau R W, Gabriel C. The dielectric proper- ties of biological tissues (Ⅲ) :Parametric models for the dielectric spectrum of tissues[J]. Physics in Medicine and Biology, 1996, 41 (11) : 2272-2273.
  • 9Liu Xu, Xiao Xia. Ultra-wideband microwave image reconstruction via FDTD with PML boundary condition for early breast cancer detection [C]//IEEE International Conference on Ultra-Wideband. Nanjing, China, 2010. 1-4.
  • 10Gabriel S, Lau R W, Gabriel C. The dielectric proper- ties of biological tissues ( Ⅱ ) : Measurements in the fre- quency range 10 Hz to 20 GHz[JJ. Physics in Medicine and Biology, 1996, 41 (11) : 2255-2267.

二级参考文献18

  • 1Larsen L E,Jacobi J H. Medical applications of microwave imaging[ M]. New York, IEEE Press, 1986.
  • 2Chaudhary S S, Mishra R K, Swamp A, et al. Dielectricproperties of normal and malignant human breast tissues at radiowave and microwave frequencies[J]. Indian J. Biochem. Biophys, 1984,21:76-79.
  • 3Surowiec A J,Stuchly S S, Barr J R, et al. Dielectricproperties of breast carcinoma and the surrounding tissues [ J]. IEEE Trans Biomed Eng, 1988, 35(4) :257 - 263.
  • 4Campbell A M, Land D V. Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz[J]. Phys Med Biol, 1992, 37(1): 193 - 210.
  • 5Joines W T, Dhenxing Y Z,Jirtle R L. The measured electrical properties of normal and malignant human tissues from 50 to 900MHz [ J ]. Med Phys, 1994, 21: 547-550.
  • 6Lazcbnik M, McCartney L, Popovic D, et al. A large- scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries[J]. Plays Med Biol, 2007, 52: 2637- 2656.
  • 7Hagness S C, Taflove A, Bridges J E. Two- dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed - focus and antenna - array sensors [ J ]. IEEE Trans. Biomed. Eng, 1998,45(12) : 1470 - 1479.
  • 8Sill J, Fear E C. Tissue sensing adaptive radar for breast cancer detection -experimental investigation of simple tumor models [ J ]. IEEE Trans. Microw. Theory Tech, 2005,53(11) :3312 - 3319.
  • 9Williams T C, Fear E C, Westwick D T. Tissue sensing adaptive radar for breast cancer detection-investigations of an improved skin - sensing method[J]. IEEE Trans. Microw. Theory Tech,2006,54(4):1308- 1314.
  • 10Sill J M, Fear E C. Tissue sensing adaptive radar for breast cancer detection: study of immersion liquids [J]. Electronics Letters, 2005,41 (3).

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部