期刊文献+

基于改进相似日算法的光伏电站功率预测 被引量:4

Power forecasting of photovoltaic plant based on improved similar day
下载PDF
导出
摘要 针对传统光伏电站功率预测方法精度不高的问题,给出一种基于改进相似日算法的广义回归神经网络功率预测方法。在该方法中,提出一种对日相似度与前趋势相似度进行多目标优化来选取相似日集的改进相似日算法,并建立了基于此算法的广义回归神经网络功率预测模型,以太阳辐照度、温度和湿度作为模型输入,光伏电站发电功率作为模型输出,提前一天预测间隔为1 h的输出功率。利用甘肃某光伏电站的实测数据进行仿真,结果表明,该方法较传统功率预测方法有更高的预测精度。 A method of power forecasting of the photovoltaic plant based on improved similar day and GRNN was introduced aiming at the problem of the low precision obtained from the traditional method.According to this method,an improved similar day algorithm was proposed,taking the multi-objective optimization on the day-similarity and the previous-trend-similarity to select the similar day set.And then,the GRNN power forecasting model was created based on this algorithm,taking the solar irradiance,temperature and humidity as the input and the power of the photovoltaic plant as the output.The output power was forecasted with 1 hour’s resolution 1 day ahead finally.The simulation result coming from the history data from the PV plant in Gansu province shows that the GRNN model can obtain a higher forecasting accuracy than the traditional method and this method can use in the PV plant with the numerical weather prediction system.
出处 《电源技术》 CAS CSCD 北大核心 2013年第7期1176-1179,共4页 Chinese Journal of Power Sources
基金 国家高技术研究发展计划(2012AA052901)
关键词 光伏电站 功率预测 广义回归神经网络 相似日算法 PV plant power forecasting GRNN similar day algorithm
  • 相关文献

参考文献11

二级参考文献85

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2高亚静,周明,李庚银,李睿,肖利民.基于马尔可夫链和故障枚举法的可用输电能力计算[J].中国电机工程学报,2006,26(19):41-46. 被引量:31
  • 3Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Transactions on Power Electronics, 2005, 20(4): 963-973.
  • 4Kim I S, Kim M B, Youn M J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1027-1035.
  • 5Xiao W, Lind M G J, Dunford W G, et al. Real-time identification of optimal operating points in photovoltaic power systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1017-1026.
  • 6Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 97-109.
  • 7Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system[C]. IEEE Power Engineering Society General Meeting, 2007.
  • 8Tsikalakis A G, Hatziargyriou Nikos D. Centralized control for optimizing microgrids operation[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 24 1-248.
  • 9Kem E C, Culachenski E M, Ken G A. Cloud effects on distributed photovoltaic generation: slow transients at the gardner, massachusetts photovoltaic experiment[J]. IEEE Transactions on Energy Conversion, 1989,4(2): 184-190.
  • 10Jewell W T, Unruh T D. Limits on cloud-induced fluctuation in photovoltaic generation[J]. IEEE Transactions on Energy Conversion, 1999, 5(1):8-14.

共引文献549

同被引文献46

  • 1祝暄懿,姚李孝.基于相似日和小波神经网络的光伏短期功率预测[J].电网与清洁能源,2019,35(3):75-78. 被引量:18
  • 2刘念,张清鑫,李小芳.基于核函数极限学习机的分布式光伏短期功率预测[J].农业工程学报,2014,30(4):152-159.
  • 3Shi Jie,Lee Weijei,Liu Yongqian.Forecasting power out of photovoltaic systems based on weather classification and support vector machines[J].IEEE Transactions on Industry Application,2012,48(3):1064-1069.
  • 4Chen Xia,Dong Zhaoyang,Meng Ke.Electricity price forecasting with extreme learning machine and bootstrapping[J].IEEE Transactions on Power Systems,2012,27(4):2055-2062.
  • 5Wu Ji,Chan C K.Prediction of hourly solar radiation using a novel hy brid model of ARMA and TDNN[J].Solar Energy,2011,85(5):808-817.
  • 6Huang N E,Shen Z,Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J].Proceedings of the Royal Society of London Series A,1998,454:903-995.
  • 7Guang Bin Huang,Qin Yu Zhu,Chee Kheong Siew.Extreme learning ma chine:Theory and applica-tions[J].Science Direct,2006,70:489-501.
  • 8Hussain T N,Su LAI,Man S I,et al.A hybrid artificial neural network for grid-connected photovoltaic system output prediction[A].Proceedings of 2013 IEEE Symposium on Computers&Informatics(ISCI)[C].Langkawi:IEEE,2013.108-111.
  • 9申彦波,赵东,祝昌汉,陶树旺,李喜仓.近50年来鄂尔多斯地面太阳辐射的变化及与相关气象要素的联系[J].高原气象,2009,28(4):786-794. 被引量:41
  • 10王一波,许洪华.基于机会约束规划的并网光伏电站极限容量研究[J].中国电机工程学报,2010,30(22):22-28. 被引量:68

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部