期刊文献+

基于拟线性化方法的非线性系统闭环反馈控制保辛算法 被引量:2

Symplectic Conservative Approach for Solving Nonlinear Closed-Loop Feedback Control Problems Based on Quasilinearization Method
下载PDF
导出
摘要 提出了一种求解非线性系统闭环反馈控制问题的保辛算法.首先,通过拟线性化方法将非线性系统最优控制问题转化为线性非齐次Hamilton系统两端边值问题的迭代格式求解.然后,通过作用量变分原理与生成函数构造了保辛的数值算法,且该算法保持了原Hamilton系统的辛几何性质.最后,通过时间步的递进完成状态与控制变量的更新,进而达到闭环控制的目的.数值算例表明:保辛算法具有较高的计算精度和较快的收敛速度.此外,将闭环反馈控制与开环控制分别应用于驱动小车上的倒立摆控制系统中.结果表明:在存在初始偏差的情况下,开环控制会导致稳定控制任务的失败,而闭环反馈控制能够在一段时间后消除初始偏差的影响,并使系统达到稳定状态. A symplectic approach was proposed to solve the nonlinear closed-loop feedback control problems.First,the optimal control problems of the nonlinear system were transformed into the iteration form of linear Hamilton system's two-point boundary value problems.Second,a symplectic numerical approach was deduced based on dual variable principle and generating function.This method can keep the symplectic geometry structure of the Hamilton system.Last,with the state vector and control input updated by the forwarding of time steps,the goal of closed-loop control was achieved.The numerical simulation shows that the proposed symplectic method has high precision and fast iteration speed.In addition,the closed-loop feedback control and open-loop control were used separately to analyze the inverted pendulum control system.The results show that in the case of the presence of initial errors,open-loop control will result in the failure of the stability control tasks,while closed-loop feedback control will eliminate the initial errors after a certain period of time and lead the system to a stable state.
出处 《应用数学和力学》 CSCD 北大核心 2013年第8期795-806,共12页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(11102031) 中央高校基本科研业务费专项资金资助项目(DUT13LK25) 国家基础性发展规划资助项目(2010CB832704)
关键词 非线性系统 拟线性化 滚动时域控制 变分原理 保辛 nonlinear system quasilinearization receding horizon control variational principle symplectic conservative method
  • 相关文献

参考文献9

  • 1Chen M, Han Z. Controlling and synchronizing chaotic Genesio system via nonlinear feedback eontrol chaos[J]. Solitons & Fractals, 2003, 17(4): 709-716.
  • 2Bodson M, Chiasson J N, Novotnak R T, Rekowski R B. High-performance nonlinear feed- back control of a permanent magnet stepper motor [ J ]. IEEE Transactions on Control Sys- tems Technology, 1993, l(1) : 5-14.
  • 3Vadali S R, Kim E S. Feedback control of tethered satellites using Lyapunov stability theory [J] Journal of Guidance, Control, and Dynamics, 1991, 14(4) : 729-735.
  • 4Aeyels D. Stabilization of a class of nonlinear systems by a smooth feedback control[ J]. Sys- tems & Control Letters, 1985, 5(5) : 289-294.
  • 5钟睿,徐世杰.基于直接配点法的绳系卫星系统变轨控制[J].航空学报,2010,31(3):572-578. 被引量:15
  • 6Mayne D Q, Michalska H. Receding horizon control of nonlinear systems[ J]. IEEE Transac- tions on Automatic Control, 1990, 35 ( 7 ) : 814-824.
  • 7PENG Hai-jun, GAO Qiang, WU Zhi-gang, ZHONG Wan-xie. Efficient sparse approach for solving receding-horizon control problems [J].Journal of Guidance, Control, and Dynam- ics, 2013. doi: 10.25t4/1. 60090.
  • 8Arnold V I. Mathematical Methods of Classical Mechanics [ M]. New York: Springer Verlag, 1989.
  • 9谭述君,钟万勰.非线性最优控制系统的保辛摄动近似求解[J].自动化学报,2007,33(9):1004-1008. 被引量:4

二级参考文献24

  • 1钟万勰.分析结构力学与有限元[J].动力学与控制学报,2004,2(4):1-8. 被引量:26
  • 2钟万勰,姚征.时间有限元与保辛[J].机械强度,2005,27(2):178-183. 被引量:30
  • 3涂良辉,袁建平,岳晓奎,罗建军.基于直接配点法的再入轨迹优化设计[J].西北工业大学学报,2006,24(5):653-657. 被引量:18
  • 4Colombo G, Gaposchkin E M, Grossi M D, et al. The skyhook: a shuttle-borne tool for low orbital attitude research[J]. Meccanica, 1975, 10(1): 3-20.
  • 5Bekey I, Penzo P A. Tether propulsion[J]. Aerospace Ameriea, 1986, 24(7): 40-43.
  • 6Lorenzini E C, Gullahorn G, Cosmo M, et al. Orbital injection of the SEDSAT satellite[R]. Smithsonian Inst Astrophysical Observatory Rept, Contract NAGS-1046, 1996.
  • 7Gratus J, Tucker R. An improved method of gravieraft propulsion[J]. Acta Astronautica, 2003, 53(1): 161- 172.
  • 8Zimmerman F, Schottle U M, Messerschmid E. Optimal deployment and return trajectories for a tether assisted re entry mission[R]. AIAA 1999 4168, 1999.
  • 9Albert L, Bruce A. Direct optimization using collocation based on high order Gauss Lobatto quadrature rules[J]. Journal of Guidance, Control, and Dynamics, 1996, 19 (3) : 592-599.
  • 10Rose I M, Fahroo F. Pseudo spectral knotting methods for solving optimal control problems[J]. Journal of Guidante, Control, and Dynamics, 2004, 27(3): 397-405.

共引文献17

同被引文献18

  • 1KRUPA M, POTH W, SCHAGERL M, et al. Modeling, dynamics and control of tethered satellite systems [ J ]. Nonlinear Dynamics, 2006 43(1-2) : 73-96.
  • 2KUMAR K D. Review on dynamics and control of nonelectrodynamic tethered satellite systems [ J ]. J Spacecraft & Rockets, 2006, 43 (4) 705 -720.
  • 3MAYNE D Q, MICHALSKA H. Receding horizon control of nonlinear systems[ J]. IEEE Trans Automat Contr, 1990, 35 (7) : 814-824.
  • 4PENG Haijun, GAO Qiang, WU Zhigang, et al. Efficient sparse approach for solving receding-horizon control problems [ J ]. J Guidance, Contr & Dynamics, 2013, 36(3): 1864-1872.
  • 5MISRA A K. Dynamics and control of tethered satellite systems[ J]. Acta Astronautica, 2008, 63 (11 ) : 1169-1177.
  • 6CARTMELL M P, MCKENZIE D J. A review of space tether research[J]. Prog Aerospace Sci, 2008, 44( 1 ) : 1-21.
  • 7WILLIAMS P. Application of pseudospectral methods for receding horizon control[J]. J Guidance, Contr & Dynamics, 2004, 27(2) : 310-314.
  • 8Dongping P.Jin,Haiyan Y.Hu.Advances in dynamics and control of tethered satellite systems[J].Acta Mechanica Sinica,2008,24(3):229-241. 被引量:27
  • 9钟睿,徐世杰.基于直接配点法的绳系卫星系统变轨控制[J].航空学报,2010,31(3):572-578. 被引量:15
  • 10梅凤翔,吴惠彬.广义Birkhoff系统的随机响应[J].北京理工大学学报,2011,31(12):1485-1488. 被引量:2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部